【架构】流水线结合生产者消费者模型赋能模型推理过程

简介: 【架构】流水线结合生产者消费者模型赋能模型推理过程

前言

  由于神经网络模型通常较大且计算密集,因此需要大量的计算资源和时间来训练和推理。加速程序可以显著减少训练和推理时间,提高效率,同时降低成本。此外,通过优化神经网络模型的训练和推理过程,可以减少不必要的计算量,进一步加速程序。在项目需要落地进行推理时往往会因为设备算力不够或因为利用率不高导致运行效率低下,今天便从优化推理架构角度进行分析。

流水线

  流水线技术是一种将一个任务分解为若干顺序执行子任务的方法,不同的子任务由不同的执行机构负责执行,而这些机构可以同时并行工作,任一任务只占用其中一个执行机构,这样就可以实现多个任务的重叠执行,以提高工作效率。

  如果以传统的方式,完成k个任务所需的时间是kNt,而使用流水线技术执行,花费的时间是Nt + (k - 1)t。也就是说,除了第一个任务需要完整的时间外,其他任务都通过并行执行以节省大量时间。所以流水线的执行时间可以通俗地表达为: 【流水线执行时间 = 第1条指令的执行时间 + (n - 1)* 流水线周期】 。

  这里我们可以化抽象为具体进行分析,如下这三个模块耗时所示:

  1. 生产数据(耗时1秒)
  2. 处理数据(耗时3秒)
  3. 推送数据(耗时可忽略不计)

当我们执行一次上述模块耗时为4秒,生产数据占25%运行时间,有75%的时间属于空闲状态,这明显是可以进行优化的。

  在处理模块这里耗时为3秒,我们可以增加处理数据模块的数量为3个进行优化,我们采用流水线操作可得耗时数据流明细:

时间 生产(1个) 处理(3个) 推送(1个)
1 1
2 2 1.1
3 3 1.2-2.1
4 4 1.3;2.2;3.1 1
5 5 2.3;3.2;4.1 2
6 6 3.3;4.2;5.1 3
7 7 4.3;5.2;6.1 4
8 8 5.3;6.2;7.1 5
9 9 6.3;7.2;8.1 6

python代码

  由于模型推理代码较为繁杂,在这里我将推理模块抽象为上述模块进行模拟实验进行验证:

python

复制代码

import time
from concurrent.futures import ThreadPoolExecutor
# 处理一个数据用时3秒
def myFunc(n):
    time.sleep(3)
    return n
# 生产一个数据时间用时1秒
def num(n):
    time.sleep(1)
    return n
max_works = 3
count = 1
# 使用ThreadPoolExecutor来并行处理数据
with ThreadPoolExecutor(max_workers=max_works) as executor:
    while True:
        n = num(count)
        future = executor.submit(myFunc, n)
        future.add_done_callback(lambda future: print("此时输出的数据为", future.result()))
        print("此时运行的时间t为:", count)
        count += 1

在上述代码中我们分别使用sleep模拟了处理耗时,运行上述代码可以得到只有前三秒时间无法获取数据,在第四秒开始可以陆陆续续得到处理好的数据,这样我们的生产数据环节处于一直工作状态,如果大家需要

复制代码

此时运行的时间t为: 1
此时运行的时间t为: 2
此时运行的时间t为: 3
此时运行的时间t为: 4
此时输出的数据为 1
此时输出的数据为 2
此时运行的时间t为: 5
此时输出的数据为 3
此时运行的时间t为: 6
此时输出的数据为 4
此时运行的时间t为: 7
此时输出的数据为 5
此时运行的时间t为: 8
此时输出的数据为 6
此时运行的时间t为: 9
此时输出的数据为 7


相关文章
|
18天前
|
机器学习/深度学习 自然语言处理 C++
TSMamba:基于Mamba架构的高效时间序列预测基础模型
TSMamba通过其创新的架构设计和训练策略,成功解决了传统时间序列预测模型面临的多个关键问题。
63 4
TSMamba:基于Mamba架构的高效时间序列预测基础模型
|
7天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
16天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
12天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
44 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
16天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
42 1
|
26天前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
68 1
|
29天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
1月前
|
存储 消息中间件 人工智能
ApsaraMQ Serverless 能力再升级,事件驱动架构赋能 AI 应用
本文整理自2024年云栖大会阿里云智能集团高级技术专家金吉祥的演讲《ApsaraMQ Serverless 能力再升级,事件驱动架构赋能 AI 应用》。
|
10天前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
23 0
|
1月前
|
人工智能 算法 测试技术
PAI 大语言模型评测平台现已支持裁判员模型评测
本文将为您介绍如何在 PAI 大语言模型评测平台,基于裁判员模型,评价开源模型或者微调后模型的性能。该功能限时免费,欢迎使用。

热门文章

最新文章

下一篇
无影云桌面