【动态规划】【二分查找】C++算法 466 统计重复个数

简介: 【动态规划】【二分查找】C++算法 466 统计重复个数

作者推荐

视频算法专题

本文涉及知识点

动态规划汇总

二分查找

力扣:466 统计重复个数

定义 str = [s, n] 表示 str 由 n 个字符串 s 连接构成。

例如,str == [“abc”, 3] ==“abcabcabc” 。

如果可以从 s2 中删除某些字符使其变为 s1,则称字符串 s1 可以从字符串 s2 获得。

例如,根据定义,s1 = “abc” 可以从 s2 = “abdbec” 获得,仅需要删除加粗且用斜体标识的字符。

现在给你两个字符串 s1 和 s2 和两个整数 n1 和 n2 。由此构造得到两个字符串,其中 str1 = [s1, n1]、str2 = [s2, n2] 。

请你找出一个最大整数 m ,以满足 str = [str2, m] 可以从 str1 获得。

示例 1:

输入:s1 = “acb”, n1 = 4, s2 = “ab”, n2 = 2

输出:2

示例 2:

输入:s1 = “acb”, n1 = 1, s2 = “acb”, n2 = 1

输出:1

提示:

1 <= s1.length, s2.length <= 100

s1 和 s2 由小写英文字母组成

1 <= n1, n2 <= 106

动态规划

inxs[i] 记录s1中’a’+i的下标,升序。

分两步:

一,动态规划求dp[i]。dp[i]的含义是:s1[i,m_c1)+s1+s1… 包括s2的最短前缀长度。

dp[i]独立计算:

通过ch遍历s2, ii是s1对应的下标。如果s1不存在ch,则直接返回0。

如果inxs[ch-‘a’]存在大于等于ii的下标ij,则ch和ij对应。ii=ij+1。

如果不存在 ,iTurn ++ ii = inxs[ch-‘a’].front()+1

dp[i] = m_c1*iTurn + ii - i ;

这一步时间复杂度:O(nnlogn)

二,循环i,看[s1,n1]能否包括i个s2。

极端情况,时间复杂度O(108)

s1是100个a,n1是106。s2是’a’。

代码

核心代码

class Solution {
public:
  int getMaxRepetitions(string s1, int n1, string s2, int n2) {
    m_c1 = s1.length();
    m_c2 = s2.length();
    vector<int> inxs[26];
    for (int i = 0; i < m_c1; i++)
    {
      inxs[s1[i] - 'a'].emplace_back(i);
    }
    vector<int> dp(m_c1);//dp[i]的含义是:s1[i,m_c1)+s1+s1.... 包括s2的最短前缀长度
    for (int i = 0; i < m_c1; i++)
    {
      int ii = i;
      int iTrun = 0;
      for (int j = 0; j < m_c2; j++)
      {
        const auto& inx = inxs[s2[j] - 'a'];
        if (inx.empty())
        {//某个字符不存在
          return 0;
        }
        const auto it = std::lower_bound(inx.begin(), inx.end(), ii);
        if (inx.end() != it )
        {
          ii = *it+1;
        }
        else
        {
          ii = inx.front() + 1;
          iTrun++;
        }
      }
      dp[i] = m_c1 * iTrun + ii-i;
    }
    const int iHas = m_c1 * n1;
    int iNeed = 0;
    int inx = 0;
    for (int i = 0; ; i++)
    {
      iNeed += dp[inx];
      inx = (inx + dp[inx]) % m_c1;
      if (iNeed > iHas)
      {
        return i/n2;//i最多包括多少个s2
      }
    }
    return 0;
  }
  int m_c1,m_c2;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
  assert(t1 == t2);
}
template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
  if (v1.size() != v2.size())
  {
    assert(false);
    return;
  }
  for (int i = 0; i < v1.size(); i++)
  {
    Assert(v1[i], v2[i]);
  }
}
int main()
{
  string s1, s2; 
  int n1, n2;
  {
    Solution sln;
    s1 = "acb", n1 = 4, s2 = "ab", n2 = 2;
    auto res = sln.getMaxRepetitions(s1, n1, s2, n2);
    Assert(2, res);
  }
  {
    Solution sln;
    s1 = "acb", n1 = 1, s2 = "acb", n2 = 1;
    auto res = sln.getMaxRepetitions(s1, n2, s2, n2);
    Assert(1, res);
  }
}

优化

inx 取值范围[0,m_c1),所以m_c1+1次必定重复。 重复的部分只计算一次。

vBuf[inx],消耗了first个s2 时,s1消耗了second个字符 ,即s1消耗了second/m_c1个 ,还消耗了s1[0,second%m_c1)。

class Solution {
public:
  int getMaxRepetitions(string s1, int n1, string s2, int n2) {
    m_c1 = s1.length();
    m_c2 = s2.length();
    vector<int> inxs[26];
    for (int i = 0; i < m_c1; i++)
    {
      inxs[s1[i] - 'a'].emplace_back(i);
    }
    vector<int> dp(m_c1);//dp[i]的含义是:s1[i,m_c1)+s1+s1.... 包括s2的最短前缀长度
    for (int i = 0; i < m_c1; i++)
    {
      int ii = i;
      int iTrun = 0;
      for (int j = 0; j < m_c2; j++)
      {
        const auto& inx = inxs[s2[j] - 'a'];
        if (inx.empty())
        {//某个字符不存在
          return 0;
        }
        const auto it = std::lower_bound(inx.begin(), inx.end(), ii);
        if (inx.end() != it )
        {
          ii = *it+1;
        }
        else
        {
          ii = inx.front() + 1;
          iTrun++;
        }
      }
      dp[i] = m_c1 * iTrun + ii-i;
    }
    const int iTotal = m_c1 * n1;
    int iHas = 0;
    int inx = 0;
    vector<pair<int,int>> vBuf(m_c1,std::pair<int,int>(-1,-1));//消耗了first个s2 时,s1消耗了second个字符
    vBuf[0] = std::pair<int, int>(0, iHas);
    for (int i = 0; ; i++)
    {
      iHas += dp[inx];
      inx = (inx + dp[inx]) % m_c1;
      if (iHas > iTotal)
      {
        return i/n2;//i最多包括多少个s2
      }
      if (-1 == vBuf[inx].first)
      {
        vBuf[inx] = std::make_pair(i+1, iHas);
      }
      else
      {
        const int subHas =iHas -  vBuf[inx].second ;
        const int subI = (i+1) - vBuf[inx].first;
        i += (iTotal-iHas) / subHas * subI;
        iHas += (iTotal - iHas) / subHas*subHas;
      }
    }
    return 0;
  }
  int m_c1,m_c2;
};

再次优化:动态规划

dp[i][j]的含义是:s1[i,m_c1)+s1+s1… 包括s2[j,m_c2)的最短前缀长度

class Solution {
public:
  int getMaxRepetitions(string s1, int n1, string s2, int n2) {
    m_c1 = s1.length();
    m_c2 = s2.length();
    vector<vector<int>> dp(m_c1, vector<int>(m_c2));//dp[i][j]的含义是:s1[i,m_c1)+s1+s1.... 包括s2[j,m_c2)的最短前缀长度
    for (int j = m_c2 - 1; j >= 0; j--)
    {
      vector<int> inxs;
      for (int i = 0; i < m_c1; i++)
      {
        if (s2[j] == s1[i])
        {
          inxs.emplace_back(i);
        }
      }
      if (inxs.empty())
      {
        return 0;
      }
      for (int i = 0, k = 0; i < m_c1; i++)
      {
        while ((k < inxs.size()) && (inxs[k] < i))
        {
          k++;
        }
        dp[i][j] = (inxs.size() == k) ? (m_c1 - i + inxs.front() + 1) : (inxs[k] - i + 1);
        if (m_c2 - 1 == j)
        {
          continue;
        }
        const int inx = (i + dp[i][j]) % m_c1;
        dp[i][j] += dp[inx][j + 1];
      }
    }
    const int iTotal = m_c1 * n1;
    int iHas = 0;
    int inx = 0;
    vector<pair<int, int>> vBuf(m_c1, std::pair<int, int>(-1, -1));//消耗了first个s2 时,s1消耗了second个字符
    vBuf[0] = std::pair<int, int>(0, iHas);
    for (int i = 0; ; i++)
    {
      iHas += dp[inx][0];
      inx = (inx + dp[inx][0]) % m_c1;
      if (iHas > iTotal)
      {
        return i / n2;//i最多包括多少个s2
      }
      if (-1 == vBuf[inx].first)
      {
        vBuf[inx] = std::make_pair(i + 1, iHas);
      }
      else
      {
        const int subHas = iHas - vBuf[inx].second;
        const int subI = (i + 1) - vBuf[inx].first;
        i += (iTotal - iHas) / subHas * subI;
        iHas += (iTotal - iHas) / subHas * subHas;
      }
    }
    return 0;
  }
  int m_c1, m_c2;
};

2023年1月 版

class Solution {

public:

int getMaxRepetitions(string s1, int n1, string s2, int n2) {

int iCnt1 = 0, iCnt2 = 0, index = 0;

std::unordered_map<int, pair<int, int>> mIndexToCnt;

while (true)

{

for (const auto& ch : s1)

{

if (ch == s2[index])

{

index++;

if (s2.length() == index)

{

index = 0;

iCnt2++;

}

}

}

iCnt1++;

if (iCnt1 == n1)

{//已经匹配完毕

return iCnt2 / n2;

}

if (mIndexToCnt.count(index))

{//找到循环节

break;

}

else

{

mIndexToCnt[index] = { iCnt1, iCnt2 };

}

}

int iLoopCnt1 = iCnt1 - mIndexToCnt[index].first;

int iLoopCnt2 = iCnt2 - mIndexToCnt[index].second;

int iRet = iCnt2 + (n1 - iCnt1) / iLoopCnt1 * iLoopCnt2;

int iRemain = (n1 - iCnt1) % iLoopCnt1;

for (int i = 0; i < iRemain; i++)

{

for (const auto& ch : s1)

{

if (ch == s2[index])

{

index++;

if (s2.length() == index)

{

index = 0;

iRet++;

}

}

}

}

return iRet/n2;

}

};


相关文章
|
1月前
|
存储 负载均衡 算法
基于 C++ 语言的迪杰斯特拉算法在局域网计算机管理中的应用剖析
在局域网计算机管理中,迪杰斯特拉算法用于优化网络路径、分配资源和定位故障节点,确保高效稳定的网络环境。该算法通过计算最短路径,提升数据传输速率与稳定性,实现负载均衡并快速排除故障。C++代码示例展示了其在网络模拟中的应用,为企业信息化建设提供有力支持。
64 15
|
1月前
|
存储 算法 数据处理
公司局域网管理中的哈希表查找优化 C++ 算法探究
在数字化办公环境中,公司局域网管理至关重要。哈希表作为一种高效的数据结构,通过哈希函数将关键值(如IP地址、账号)映射到数组索引,实现快速的插入、删除与查找操作。例如,在员工登录验证和设备信息管理中,哈希表能显著提升效率,避免传统线性查找的低效问题。本文以C++为例,展示了哈希表在局域网管理中的具体应用,包括设备MAC地址与IP分配的存储与查询,并探讨了优化哈希函数和扩容策略,确保网络管理高效准确。
|
10天前
|
存储 监控 算法
基于 C++ 哈希表算法的局域网如何监控电脑技术解析
当代数字化办公与生活环境中,局域网的广泛应用极大地提升了信息交互的效率与便捷性。然而,出于网络安全管理、资源合理分配以及合规性要求等多方面的考量,对局域网内计算机进行有效监控成为一项至关重要的任务。实现局域网内计算机监控,涉及多种数据结构与算法的运用。本文聚焦于 C++ 编程语言中的哈希表算法,深入探讨其在局域网计算机监控场景中的应用,并通过详尽的代码示例进行阐释。
30 4
|
3月前
|
存储 算法 C++
【C++数据结构——查找】二分查找(头歌实践教学平台习题)【合集】
二分查找的基本思想是:每次比较中间元素与目标元素的大小,如果中间元素等于目标元素,则查找成功;顺序表是线性表的一种存储方式,它用一组地址连续的存储单元依次存储线性表中的数据元素,使得逻辑上相邻的元素在物理存储位置上也相邻。第1次比较:查找范围R[0...10],比较元素R[5]:25。第1次比较:查找范围R[0...10],比较元素R[5]:25。第2次比较:查找范围R[0..4],比较元素R[2]:10。第3次比较:查找范围R[3...4],比较元素R[3]:15。,其中是顺序表中元素的个数。
174 68
【C++数据结构——查找】二分查找(头歌实践教学平台习题)【合集】
|
2月前
|
算法 Java 索引
算法系列之搜素算法-二分查找
二分查找是一种在`有序`数组中查找特定元素的算法。它的基本思想是通过将数组分成两半,逐步缩小查找范围,直到找到目标元素或确定目标元素不存在。
37 9
算法系列之搜素算法-二分查找
|
2月前
|
存储 监控 算法
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
在数字化办公时代,公司监控上网软件成为企业管理网络资源和保障信息安全的关键工具。本文深入剖析C++中的链表数据结构及其在该软件中的应用。链表通过节点存储网络访问记录,具备高效插入、删除操作及节省内存的优势,助力企业实时追踪员工上网行为,提升运营效率并降低安全风险。示例代码展示了如何用C++实现链表记录上网行为,并模拟发送至服务器。链表为公司监控上网软件提供了灵活高效的数据管理方式,但实际开发还需考虑安全性、隐私保护等多方面因素。
39 0
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
|
3月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
114 2
|
13天前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
|
6天前
|
算法 安全 数据安全/隐私保护
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
|
21天前
|
算法 数据可视化 BI
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真