Flink问题子实现Kafka到Mysql如何解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。本合集提供有关Apache Flink相关技术、使用技巧和最佳实践的资源。

问题一:Flink实现Kafka到Mysql的 End-To-End Exactly-Once中遇到的问题


最近是实现Kafka到Mysql的 End-To-End Exactly-Once中遇到以下2个问题: 1:com.mysql.jdbc.exceptions.jdbc4.MySQLNonTransientConnectionException: Communications link failure during commit(). Transaction resolution unknown. 2:org.apache.flink.streaming.runtime.tasks.TimerException: org.apache.flink.streaming.runtime.tasks.ExceptionInChainedOperatorException: Could not forward element to next operator

已经做了一个最简单的复现问题的demo,求指教 git clone https://github.com/lusecond/flink_help --depth=1

测试过程中,发现继承TwoPhaseCommitSinkFunction类的4个重写方法beginTransaction、preCommit、commit、abort 分别在不同的线程工作,怀疑过因为线程切换导致jdbc的事务提交出问题,已经做过相关测试排除不是由此引起的问题*来自志愿者整理的flink邮件归档


参考回答:

是否可以尝试使用幂等来解决 端到端的一致性


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/373592


问题二:Rewind offset to a previous position and ensure ce


Rewind offset to a previous position and ensure certainty. I'm trying to use Kafka as an event store and I want to create several partitions to improve read/write throughput. Occasionally I need to rewind offset to a previous position for recomputing. Since order isn't guaranteed among partitions in Kafka, does this mean that Flink won't produce the same results as before when rewind even if it uses event time? For example, consumer for a partition progresses extremely fast and raises watermark, so events from other partitions are discarded. Is there any ways to prevent this from happening?


参考回答:

Are you finding how to generate watermark pre Kafka partition? Flink provides Kafka-partition-aware watermark generation. 1


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/373594


问题三:关于 FLink historyserver没有completed-jobs的问题


我启动了flink的historyserver,但是里面并没有已完成的任务 配置如下:

结果界面如下:

hdfs如下:


参考回答:

flink-conf.yaml里需要有这些配置

historyserver.web.port: 8082

historyserver.web.address: 0.0.0.0

historyserver.archive.fs.refresh-interval: 10000

historyserver.archive.fs.dir: hdfs://127.0.0.1:8020/flink/v1.1/completed-jobs/

jobmanager.archive.fs.dir: hdfs://127.0.0.1:8020/flink/v1.1/completed-jobs/

#多少秒后,会将完成的任务提交到history

jobstore.expiration-time: 14400

jobmanager.archive.fs.dir和historyserver.archive.fs.dir一样即可

然后启动bin/historyserver.sh start

访问ip:8082,需要跑一个任务,并且等待jobstore.expiration-time这个时间,才会有数据


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/373597

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
3月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
247 0
|
18天前
|
监控 关系型数据库 MySQL
Flink CDC MySQL同步MySQL错误记录
在使用Flink CDC同步MySQL数据时,常见的错误包括连接错误、权限错误、表结构变化、数据类型不匹配、主键冲突和
62 16
|
3月前
|
消息中间件 NoSQL Kafka
Flink-10 Flink Java 3分钟上手 Docker容器化部署 JobManager TaskManager Kafka Redis Dockerfile docker-compose
Flink-10 Flink Java 3分钟上手 Docker容器化部署 JobManager TaskManager Kafka Redis Dockerfile docker-compose
80 4
|
3月前
|
消息中间件 NoSQL Kafka
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
222 0
|
3月前
|
消息中间件 资源调度 大数据
大数据-112 Flink DataStreamAPI 程序输入源 DataSource 基于文件、集合、Kafka连接器
大数据-112 Flink DataStreamAPI 程序输入源 DataSource 基于文件、集合、Kafka连接器
63 0
|
消息中间件 Kafka 流计算
|
4月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
2月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1425 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
2月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
173 56
|
8天前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。

相关产品

  • 实时计算 Flink版
  • 下一篇
    开通oss服务