淘宝设计2023年度AI设计实践报告(下)

简介: 淘宝设计2023年度AI设计实践报告(下)

淘宝设计2023年度AI设计实践报告(中):https://developer.aliyun.com/article/1443514

 产品营销视觉


UI设计的场景中,采用AI能力可以快速定制多种用户需要的视觉效果,我们通过SD中controlnet的有效控制,可以生成指定范围内的ICON、界面皮肤等内容,加大了很多产品功能的定制可能性。


案例 88VIP-AI定制皮肤

 定制模特AI生成


通过对AI大模型的训练和应用,算法从模特姿态、背景风格、装饰元素等多个维度进行效果升级,提升了合成真实性和美感,再结合用户脸型、身材数据,给用户提供定制化的线上真人化模特体验。

案例1 AI试衣间

案例2 AI写真


简化数据采集流程构建用户的数字分身,在保证又“像”又“美”的用户价值下,根据不同主题的摄影风格生成AI写真,让普通用户能通过AIGC创造好玩有趣的内容。

 产品场景生成


一张商品图,结合用户的自定义输入,便可生成多张场景效果。在整个过程中,不需要3D模型,不需要显卡渲染,不需要线下拍摄。

案例  “家作”家装场景灵感

 手猫全链路AI购物助手


C端电商全链路的AI应用体验创新 打破AI即对话的惯性 构建实用、高效、符合电商的体验范式,2种产品架构(中心式助手、节点式功能)+ 4个体验原则(次不妨主、感知有度、结果直给、一步操作)推动购前、中后全场景落地。

案例 手猫全链路AI购物助手

 AI生图美学标准


基于图像美学的构成逻辑,抽离AI生图的美学标准,运用于AI算法模型的调优,以及生成的判定。聚合模型修复能力,提升整体模型的良图率。

AI生图美学标准

AI生图美学标准 - 5大准则 19项标准

AI生图美学标准 - 风格标准:视觉呈现

AI设计系统如何帮助设计团队提升能力


 「针对性的AI工作流」——建立有效的设计工作流



 「实用的模型训练」——准确还原风格、加速品牌融合


使用lora模型训练的方式,能够生成特定的形象及KV风格,建立一个包含品牌形象、风格视觉的DNA的模型,我们将模型根据实用场景分成了4种类型:


此外,在营销活动期间,市场环境和消费者偏好可能会发生变化。我们在紧跟这些变化的同时,迅速调整lora模型,确保持续符合目标用户的喜好,使营销内容更加生动鲜明,与消费者的连接也更加紧密。


 「AI设计资产储备」——设计团队的AI能力提升


建立和管理AI设计资产,沉淀AI相关的知识、技能、工具,可以提升团队AI能力,对设计成效产生正面影响: 团队成员可以分享他们的设计经验验和学习心得,从而促进团队内部的知识积累和提升。 参数库可以帮助团队快速启动新项目,确保设计的准确性,并减少重复工作。 工具、模版、元素可以帮助团队在设计过程中更高效地生成,同时保持设计的一致性和质量。

AI整合工具平台:桃花源


根据对日常设计工作的需求,我们团队依托实践沉淀的工作流和经验,搭建了AI整合工具平台——「桃花源 | 淘宝设计AIGC」。逐步引入的每一项功能经过细致的评估和选择,以确保其实用性和与业务需求的贴合度,同时能够增强我们设计工作的专业性和效率,为我们的产品和服务创造更大的价值。

未来展望
面对未来最重要的是如何利用新能力去更好的应对业务,所以对于各方面的要求也在快速发生着变化:

  1. 设计专业的要求:AI将重新定义设计师的竞争力边界,要具备持续的学习习惯,并快速转化为实践能力。在未来AI看似降低了设计的门槛,实则对于需求理解、问题分析、审美判断、创意亮点提出了更高的要求;对于高阶的设计师,要更加的显性化设计思考与专业优势,最终在设计质量上去到更高的层次。
  2. 工具能力的要求:需对现有AI工具进行严格评估和选型,确保它们能够提供标准化输出和一致性体验,提升设计的质量和速度,减少不同页面以及不同设计师间的设计差异,建设参数文档库,而非个人喜好的自然语言。同时可以基于业务场景特征,训练专属AI模型、集成相应AI能力形成新工具,从而形成更有效的设计资产。
  3. 工作流程的要求:需要将AI深入到日常设计流程里,形成新的工作方式与流程,基于不同的AI能力特性,差异化的对待不同业务形态和需求,所以将会对于设计流程更加精细化,从项目启动到最终交付,每一步都需要针对AI的特性进行优化,以实现最大化的效率和创意品质,找到更合理的人&机结合的方式,值得我们持续去探索。
  4. 设计团队的要求:设计团队必须制定并执行明确的AI融合策略,保证所需硬件设备的支持,营造积极主动的创新环境,增强对市场动态的快速适应能力,以确保团队整体的未来发力方向。


总之随着技术的不断进步,我们可以期待AI在视觉设计领域扮演更重要的角色,并为设计师和用户创造更多的可能性。


目录
相关文章
|
25天前
|
人工智能 Serverless
AI 大模型助力客户对话分析 ——实践操作
参与《AI大模型助力客户对话分析》项目,基于阿里云社区操作路书,从架构设计到部署测试,逐步学习并应用大模型进行AI质检。过程中虽有控制台跳转等小挑战,但整体体验流畅,展示了AI技术的便捷与魅力,以及阿里云平台的先进性和社区支持。最终实现的AI质检功能,能够有效提升企业客户服务质量与效率。
48 0
|
20天前
|
存储 人工智能 弹性计算
基于《文档智能 & RAG让AI大模型更懂业务》解决方案实践体验后的想法
通过实践《文档智能 & RAG让AI大模型更懂业务》实验,掌握了构建强大LLM知识库的方法,处理企业级文档问答需求。部署文档和引导充分,但需增加资源选型指导。文档智能与RAG结合提升了文档利用效率,但在答案质量和内容精确度上有提升空间。解决方案适用于法律文档查阅、技术支持等场景,但需加强数据安全和隐私保护。建议增加基于容量需求的资源配置指导。
80 4
|
18天前
|
人工智能 JavaScript 前端开发
利用 AI 进行代码生成:GitHub Copilot 的实践与反思
【10月更文挑战第23天】本文探讨了GitHub Copilot,一个由微软和OpenAI合作推出的AI代码生成工具,其核心功能包括智能代码补全、多语言支持、上下文感知和持续学习。文章介绍了Copilot在加速开发流程、学习新语言、提高代码质量和减少重复工作等方面的应用,并反思了AI在代码生成中的代码所有权、安全性和技能发展等问题。最后,文章提供了实施Copilot的最佳实践,强调了在使用AI工具时保持对代码的控制和理解的重要性。
|
22天前
|
人工智能
精通歌词结构技巧:写歌词的方法与实践,妙笔生词AI智能写歌词软件
歌词创作是音乐的灵魂,掌握其结构技巧至关重要。开头需迅速吸引听众,主体部分需结构清晰、情感丰富,结尾则要余韵悠长。无论是叙事还是抒情,妙笔生词智能写歌词软件都能助你一臂之力,提供AI智能创作、优化及解析等多功能支持,助你轻松驾驭歌词创作。
|
22天前
|
人工智能 资源调度 数据可视化
【AI应用落地实战】智能文档处理本地部署——可视化文档解析前端TextIn ParseX实践
2024长沙·中国1024程序员节以“智能应用新生态”为主题,吸引了众多技术大咖。合合信息展示了“智能文档处理百宝箱”的三大工具:可视化文档解析前端TextIn ParseX、向量化acge-embedding模型和文档解析测评工具markdown_tester,助力智能文档处理与知识管理。
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI在软件测试中的创新应用与实践###
本文旨在探讨人工智能(AI)技术如何革新软件测试领域,提升测试效率、质量与覆盖范围。通过深入分析AI驱动的自动化测试工具、智能化缺陷预测模型及持续集成/持续部署(CI/CD)流程优化等关键方面,本研究揭示了AI技术在解决传统软件测试痛点中的潜力与价值。文章首先概述了软件测试的重要性和当前面临的挑战,随后详细介绍了AI技术在测试用例生成、执行、结果分析及维护中的应用实例,并展望了未来AI与软件测试深度融合的趋势,强调了技术伦理与质量控制的重要性。本文为软件开发与测试团队提供了关于如何有效利用AI技术提升测试效能的实践指南。 ###
|
30天前
|
人工智能
阅读了《文档智能 & RAG让AI大模型更懂业务》的解决方案后对解决方案的实践原理的理解
阅读《文档智能 & RAG让AI大模型更懂业务》后,我对文档智能处理与RAG技术结合的实践原理有了清晰理解。部署过程中,文档帮助详尽,但建议增加常见错误处理指南。体验LLM知识库后,模型在处理业务文档时效率和准确性显著提升,但在知识库自动化管理和文档适应能力方面仍有改进空间。解决方案适用于多种业务场景,但在特定场景下的集成和定制化方面仍需提升。
|
1月前
|
机器学习/深度学习 人工智能 自动驾驶
探索AI未来:从理论到实践
【10月更文挑战第9天】探索AI未来:从理论到实践
34 2
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的无限可能:从理论到实践
【10月更文挑战第9天】在这篇文章中,我们将深入探讨人工智能(AI)的世界,从基本概念到实际应用,再到未来发展趋势。我们将通过实例和代码示例,揭示AI如何改变我们的生活和工作方式。无论你是AI领域的新手,还是有经验的开发者,这篇文章都将为你提供有价值的信息和启示。让我们一起探索AI的无限可能吧!
|
29天前
|
人工智能 API 数据安全/隐私保护
[大语言模型-工程实践] 手把手教你-基于Ollama搭建本地个人智能AI助理
[大语言模型-工程实践] 手把手教你-基于Ollama搭建本地个人智能AI助理
119 0