m基于码率兼容打孔LDPC码nms最小和译码算法的LDPC编译码matlab误码率仿真

简介: m基于码率兼容打孔LDPC码nms最小和译码算法的LDPC编译码matlab误码率仿真

1.算法仿真效果
matlab2022a仿真结果如下:
dc612e0aa91175fc57dee13a06405655_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
码率兼容打孔LDPC码BP译码算法是一种改进的LDPC译码算法,能够在不同码率下实现更好的译码性能。该算法通过在LDPC码中引入打孔操作,使得码率可以灵活地调整,同时利用BP(Belief Propagation)译码算法进行迭代译码,提高了译码的准确性和可靠性。

   LDPC编码算法基于稀疏矩阵的乘积码,通过奇偶校验位来纠正传输过程中的错误。其核心思想是通过尽可能低的密度奇偶校验位来构造大量的码字,使得每个码字的校验和为0。

    设原始信息位长度为k,校验位长度为r,总码字长度为n=k+r。将原始信息位放入一个长度为k的行向量中,将校验位放入一个长度为r的列向量中。然后构建一个(n-k)×n的校验矩阵H,其中每一行是一个奇偶校验位,每一列是一个码字。

   为了实现码率兼容,引入打孔操作。打孔操作是指在码字中删除一些校验位,使得总码率在一定范围内可调。具体实现时,可以按照一定规则随机删除一些校验位,或者根据码率要求计算需要删除的校验位数。打孔操作后,可以得到一个新的校验矩阵H',其中每一行仍是一个奇偶校验位,但每一列可能不再是完整的码字。

    归一化最小和(nMS)算法的基本思想是在传递消息时,对最小和算法中计算出的消息值进行归一化处理。归一化的目的是减少由于MS算法中的近似计算造成的性能损失,并试图逼近和积算法的性能。

    在nMS算法中,每个变量节点计算其传递给校验节点的消息时,会基于最小和算法找到最小的入度消息(对应于与该变量节点相连的其他校验节点的消息)和次小的入度消息。然后,变量节点会计算出一个初步的消息值,该值等于最小消息值和次小消息值之差。接着,这个初步的消息值会被归一化,即乘以一个归一化因子(通常小于1),然后再传递给相邻的校验节点。

LDPC编码算法的实现步骤如下:

生成随机的(n-k)×n的校验矩阵H;
根据要求进行打孔操作,得到新的校验矩阵H';
将原始信息位按顺序写入一个长度为k的行向量中;
根据校验矩阵H'计算校验和,得到长度为r'的列向量;
将原始信息位和校验位串联起来,得到长度为n的码字向量;
将码字向量进行比特反转,得到最终的LDPC码字。

    最小和译码算法(Min-Sum Algorithm)是LDPC译码的一种简化算法,相较于标准的置信传播(Belief Propagation,BP)算法,具有更低的计算复杂度。

置信传播算法基础

   BP算法是LDPC译码的基础算法,通过迭代更新变量节点和校验节点的置信度信息来进行译码。其核心步骤包括初始化、水平步骤(变量节点到校验节点)、垂直步骤(校验节点到变量节点)和判决步骤。

最小和译码算法原理

   最小和算法在BP算法的基础上进行了简化,用最小值和次小值的运算代替了BP算法中的对数运算和乘法运算,从而降低了计算复杂度。

3.MATLAB核心程序
```% 开始仿真
for ij = 1:length(SNRs)
err_sum = 0;
err_len = 0;
for jk = 1:MTKL
[jk,ij]
%生成随机的信息位
msgs = randi(2,1,Param.B)-1;
%进行代码块分割
cbs_msg = func_cbs(msgs,Param);
%编码
[dat_code,dat_puncture] = func_ldpc_encoder(cbs_msg,Param);
%进行速率匹配
dat_match = func_rate_match(dat_code,Param);
%映射
dat_map = 2*dat_match-1;

    %通过信道
    Rec_data                = awgn(dat_map,SNRs(ij));

    %计算对数似然比
    Sigma                   = 1/10^((SNRs(ij))/10);
    llr                     = -2*Rec_data./Sigma;

    % 进行速率去匹配
    dat_dematch             = func_rate_dematch(llr,Param);
    dat_decode              = zeros(Param.C, Param.K);
    for k=1:Param.C
        dat_decode(k,:)    = func_nms_puncture(dat_dematch(k,:), Param, Iters,alpha);
    end
    dat_decbs               = func_ldpc_decbs(dat_decode, Param);
    err                     = sum(abs(dat_decbs - msgs));
    err_sum                 = err_sum + err;
    %统计一个仿真块的结果
    err_len = err_len + K;
end
errors(ij) = err_sum/err_len;

end
```

相关文章
|
1月前
|
算法 数据安全/隐私保护
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
|
1月前
|
算法 机器人 数据安全/隐私保护
基于双向RRT算法的三维空间最优路线规划matlab仿真
本程序基于双向RRT算法实现三维空间最优路径规划,适用于机器人在复杂环境中的路径寻找问题。通过MATLAB 2022A测试运行,结果展示完整且无水印。算法从起点和终点同时构建两棵随机树,利用随机采样、最近节点查找、扩展等步骤,使两棵树相遇以形成路径,显著提高搜索效率。相比单向RRT,双向RRT在高维或障碍物密集场景中表现更优,为机器人技术提供了有效解决方案。
|
1月前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
15天前
|
算法 数据安全/隐私保护
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
本项目实现了一种基于Logistic Map混沌序列的数字信息加解密算法,使用MATLAB2022A开发并包含GUI操作界面。支持对文字、灰度图像、彩色图像和语音信号进行加密与解密处理。核心程序通过调整Logistic Map的参数生成伪随机密钥序列,确保加密的安全性。混沌系统的不可预测性和对初值的敏感依赖性是该算法的核心优势。示例展示了彩色图像、灰度图像、语音信号及文字信息的加解密效果,运行结果清晰准确,且完整程序输出无水印。
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
|
14天前
|
算法
基于PSO粒子群优化的多无人机路径规划matlab仿真,对比WOA优化算法
本程序基于粒子群优化(PSO)算法实现多无人机路径规划,并与鲸鱼优化算法(WOA)进行对比。使用MATLAB2022A运行,通过四个无人机的仿真,评估两种算法在能耗、复杂度、路径规划效果及收敛曲线等指标上的表现。算法原理源于1995年提出的群体智能优化,模拟鸟群觅食行为,在搜索空间中寻找最优解。环境建模采用栅格或几何法,考虑避障、速度限制等因素,将约束条件融入适应度函数。程序包含初始化粒子群、更新速度与位置、计算适应度值、迭代优化等步骤,最终输出最优路径。
|
24天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于PSO(粒子群优化)改进TCN(时间卷积神经网络)的时间序列预测方法。使用Matlab2022a运行,完整程序无水印,附带核心代码中文注释及操作视频。TCN通过因果卷积层与残差连接处理序列数据,PSO优化其卷积核权重等参数以降低预测误差。算法中,粒子根据个体与全局最优位置更新速度和位置,逐步逼近最佳参数组合,提升预测性能。
|
30天前
|
传感器 算法 数据安全/隐私保护
基于GA遗传优化的三维空间WSN网络最优节点部署算法matlab仿真
本程序基于遗传算法(GA)优化三维空间无线传感网络(WSN)的节点部署,通过MATLAB2022A实现仿真。算法旨在以最少的节点实现最大覆盖度,综合考虑空间覆盖、连通性、能耗管理及成本控制等关键问题。核心思想包括染色体编码节点位置、适应度函数评估性能,并采用网格填充法近似计算覆盖率。该方法可显著提升WSN在三维空间中的部署效率与经济性,为实际应用提供有力支持。
|
30天前
|
算法 数据处理 数据安全/隐私保护
基于投影滤波算法的rick合成地震波滤波matlab仿真
本课题基于MATLAB2022a实现对RICK合成地震波的滤波仿真,采用投影滤波与卷积滤波投影两种方法处理合成地震剖面。地震波滤波是地震勘探中的关键步骤,用于去噪和增强信号。RICK模型模拟实际地震数据,投影滤波算法通过分解信号与噪声子空间实现有效去噪。完整程序运行无水印,包含核心代码与理论推导,适用于地震数据处理研究及学习。
|
30天前
|
算法 物联网 数据安全/隐私保护
基于扩频解扩+汉明编译码+交织的lora通信系统matlab性能仿真
本内容展示了一种基于扩频解扩、汉明编译码和交织技术的LoRa通信算法。预览为无水印的完整程序运行效果,使用Matlab2022a开发。LoRa(Long Range)是一种低功耗广域网通信技术,适用于远距离低功耗数据传输。核心程序含详细中文注释与操作视频,涵盖抗干扰、错误检测纠正及突发错误对抗等关键技术,提升系统可靠性与稳定性。

热门文章

最新文章