m基于码率兼容打孔LDPC码nms最小和译码算法的LDPC编译码matlab误码率仿真

简介: m基于码率兼容打孔LDPC码nms最小和译码算法的LDPC编译码matlab误码率仿真

1.算法仿真效果
matlab2022a仿真结果如下:
dc612e0aa91175fc57dee13a06405655_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
码率兼容打孔LDPC码BP译码算法是一种改进的LDPC译码算法,能够在不同码率下实现更好的译码性能。该算法通过在LDPC码中引入打孔操作,使得码率可以灵活地调整,同时利用BP(Belief Propagation)译码算法进行迭代译码,提高了译码的准确性和可靠性。

   LDPC编码算法基于稀疏矩阵的乘积码,通过奇偶校验位来纠正传输过程中的错误。其核心思想是通过尽可能低的密度奇偶校验位来构造大量的码字,使得每个码字的校验和为0。

    设原始信息位长度为k,校验位长度为r,总码字长度为n=k+r。将原始信息位放入一个长度为k的行向量中,将校验位放入一个长度为r的列向量中。然后构建一个(n-k)×n的校验矩阵H,其中每一行是一个奇偶校验位,每一列是一个码字。

   为了实现码率兼容,引入打孔操作。打孔操作是指在码字中删除一些校验位,使得总码率在一定范围内可调。具体实现时,可以按照一定规则随机删除一些校验位,或者根据码率要求计算需要删除的校验位数。打孔操作后,可以得到一个新的校验矩阵H',其中每一行仍是一个奇偶校验位,但每一列可能不再是完整的码字。

    归一化最小和(nMS)算法的基本思想是在传递消息时,对最小和算法中计算出的消息值进行归一化处理。归一化的目的是减少由于MS算法中的近似计算造成的性能损失,并试图逼近和积算法的性能。

    在nMS算法中,每个变量节点计算其传递给校验节点的消息时,会基于最小和算法找到最小的入度消息(对应于与该变量节点相连的其他校验节点的消息)和次小的入度消息。然后,变量节点会计算出一个初步的消息值,该值等于最小消息值和次小消息值之差。接着,这个初步的消息值会被归一化,即乘以一个归一化因子(通常小于1),然后再传递给相邻的校验节点。

LDPC编码算法的实现步骤如下:

生成随机的(n-k)×n的校验矩阵H;
根据要求进行打孔操作,得到新的校验矩阵H';
将原始信息位按顺序写入一个长度为k的行向量中;
根据校验矩阵H'计算校验和,得到长度为r'的列向量;
将原始信息位和校验位串联起来,得到长度为n的码字向量;
将码字向量进行比特反转,得到最终的LDPC码字。

    最小和译码算法(Min-Sum Algorithm)是LDPC译码的一种简化算法,相较于标准的置信传播(Belief Propagation,BP)算法,具有更低的计算复杂度。

置信传播算法基础

   BP算法是LDPC译码的基础算法,通过迭代更新变量节点和校验节点的置信度信息来进行译码。其核心步骤包括初始化、水平步骤(变量节点到校验节点)、垂直步骤(校验节点到变量节点)和判决步骤。

最小和译码算法原理

   最小和算法在BP算法的基础上进行了简化,用最小值和次小值的运算代替了BP算法中的对数运算和乘法运算,从而降低了计算复杂度。

3.MATLAB核心程序
```% 开始仿真
for ij = 1:length(SNRs)
err_sum = 0;
err_len = 0;
for jk = 1:MTKL
[jk,ij]
%生成随机的信息位
msgs = randi(2,1,Param.B)-1;
%进行代码块分割
cbs_msg = func_cbs(msgs,Param);
%编码
[dat_code,dat_puncture] = func_ldpc_encoder(cbs_msg,Param);
%进行速率匹配
dat_match = func_rate_match(dat_code,Param);
%映射
dat_map = 2*dat_match-1;

    %通过信道
    Rec_data                = awgn(dat_map,SNRs(ij));

    %计算对数似然比
    Sigma                   = 1/10^((SNRs(ij))/10);
    llr                     = -2*Rec_data./Sigma;

    % 进行速率去匹配
    dat_dematch             = func_rate_dematch(llr,Param);
    dat_decode              = zeros(Param.C, Param.K);
    for k=1:Param.C
        dat_decode(k,:)    = func_nms_puncture(dat_dematch(k,:), Param, Iters,alpha);
    end
    dat_decbs               = func_ldpc_decbs(dat_decode, Param);
    err                     = sum(abs(dat_decbs - msgs));
    err_sum                 = err_sum + err;
    %统计一个仿真块的结果
    err_len = err_len + K;
end
errors(ij) = err_sum/err_len;

end
```

相关文章
|
18天前
|
算法 机器人
基于SOA海鸥优化算法的PID控制器最优控制参数计算matlab仿真
本课题研究基于海鸥优化算法(SOA)优化PID控制器参数的方法,通过MATLAB仿真对比传统PID控制效果。利用SOA算法优化PID的kp、ki、kd参数,以积分绝对误差(IAE)为适应度函数,提升系统响应速度与稳定性。仿真结果表明,SOA优化的PID控制器在阶跃响应和误差控制方面均优于传统方法,具有更快的收敛速度和更强的全局寻优能力,适用于复杂系统的参数整定。
|
13天前
|
传感器 算法 数据挖掘
基于协方差交叉(CI)的多传感器融合算法matlab仿真,对比单传感器和SCC融合
基于协方差交叉(CI)的多传感器融合算法,通过MATLAB仿真对比单传感器、SCC与CI融合在位置/速度估计误差(RMSE)及等概率椭圆上的性能。采用MATLAB2022A实现,结果表明CI融合在未知相关性下仍具鲁棒性,有效降低估计误差。
127 15
|
14天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的XGBoost序列预测算法matlab仿真
基于WOA优化XGBoost的序列预测算法,利用鲸鱼优化算法自动寻优超参数,提升预测精度。结合MATLAB实现,适用于金融、气象等领域,具有较强非线性拟合能力,实验结果表明该方法显著优于传统模型。(238字)
|
16天前
|
传感器 算法
采用SRF算法的分流有源滤波器【并联有源滤波器的仿真电路可降低谐波和无功功率】(Simulink仿真实现)
采用SRF算法的分流有源滤波器【并联有源滤波器的仿真电路可降低谐波和无功功率】(Simulink仿真实现)
|
18天前
|
存储 算法 数据可视化
基于禁忌搜索算法的TSP问题最优路径搜索matlab仿真
本程序基于禁忌搜索算法解决旅行商问题(TSP),旨在寻找访问多个城市的最短路径。使用 MATLAB 2022A 编写,包含城市坐标生成、路径优化及结果可视化功能。通过禁忌列表、禁忌长度与藐视准则等机制,提升搜索效率与解的质量,适用于物流配送、路径规划等场景。
|
1月前
|
算法 Python
粒子群算法对pi控制器进行参数优化,随时优化pi参数以控制直流无刷电机转速(Simulink仿真实现)
粒子群算法对pi控制器进行参数优化,随时优化pi参数以控制直流无刷电机转速(Simulink仿真实现)
|
1月前
|
存储 算法 数据安全/隐私保护
基于钱搜索译码算法的BCH编译码matlab误码率仿真
本内容介绍了基于BCH码的编码算法及其MATLAB仿真,包含仿真结果、理论基础及核心程序。BCH码具备多错误纠正能力,广泛应用于通信与存储系统,结合钱搜索译码算法实现高效硬件处理。
49 5
|
2月前
|
算法 新能源 异构计算
【最小均方(LMS)算法的分流有源滤波器】分流有源滤波器采用最小均方(LMS)算法的仿真电路可以减轻谐波和无功功率(Simulink仿真实现)
【最小均方(LMS)算法的分流有源滤波器】分流有源滤波器采用最小均方(LMS)算法的仿真电路可以减轻谐波和无功功率(Simulink仿真实现)
|
2月前
|
传感器 算法 Python
【电机矢量控制算法】基于线性死区补偿的永磁同步电机矢量控制算法仿真
【电机矢量控制算法】基于线性死区补偿的永磁同步电机矢量控制算法仿真
|
1月前
|
数据可视化
基于遗传算法(GA)的配电网优化运行仿真
基于遗传算法(GA)的配电网优化运行仿真

热门文章

最新文章