大语言模型LLM中的幻觉

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: 大语言模型LLM中的幻觉

LLM是什么?

大型语言模型(LLM)是一种基于自然语言处理和机器学习技术的大型语言处理模型。它能够理解和生成自然语言文本,并能够处理各种语言和文本类型,如对话、问答、文本生成等。

LLM的主要特点是使用了大规模的语料库和复杂的机器学习算法,通过学习大量的文本数据,以理解、生成和分类自然语言文本。它能够处理复杂的语言结构和语义,并且可以处理多种语言和文本类型,包括但不限于小说、新闻、电子邮件、社交媒体文本等。

LLM在许多领域都有广泛的应用,如搜索引擎、机器翻译、自然语言理解、智能客服、语音识别、内容审核等。它可以帮助人们更高效地处理大量的自然语言数据,提高语言处理的准确性和效率。同时,LLM也面临着一些挑战,如模型的可解释性、安全性和隐私问题等。

幻觉

由ChatGPT带来的大模型时代,国内外各大厂家都在陆续推出自己的大模型,然而目前大模型都存在一个普遍的现象就是:幻觉。

大白话就是大模型无法理解你的用词约束,结果出来一个稀里糊涂的东西。

简称:对牛弹琴。

我们在医学、金融、科研等领域对一些数据要求精准度非常的高,如果给个幻觉的错误数据,那么后面问题就太大了。

事实幻觉

事实不一致,当问AI:如何解决大模型的幻觉问题,话题是:幻觉可以说早就已经是LLM老生常谈的问题了,那为什么会产生这个现象该如何解决这个问题呢?快来和我们分享一下吧~

反馈结果如下:

这就很离谱,还是重要的角色了,完全的不对啊。其实我们文的也稍微有点问题,如果单独文LLM是什么的话我们来看看。

这个回答就更不靠谱了。。。

事实捏造

我们还问LLM,这回问LLM的起源是什么?

根本不是我们想要的,这个大概率是百度搜出来的,不一定靠谱,按时我知道LLM单独搜索肯定是法学硕士,可以百度的结果真的就靠谱吗?很明显不是,我学生也做个这个,很多信息条是不正确的。

指令与答案不一致、文本不一致、逻辑不一致,这类问题很多,用着各种不舒服的。所以我们就需要一直更换我们的提示词语。

错误信息和偏见。鉴于对大规模语料库的需求日益增长,启发式数据收集方法被用来有效收集大量数据。

这种方法在提供大量数据的同时,可能会无意中引入错误信息,增加出现模仿性错误的风险。此外,社会偏见也会在无意中被引入LLMs的学习过程。

这些偏差主要包括重复偏差和各种社会偏差,导致最终的数据出现各类的问题。

总结

实话说,想彻底解决这个问题可以说很难很难,在数据收集的时候很多数据我们无法保证它的正确性,就算是当前科学界确认的东西也可能在某方面是不正确的,本身就没有绝对正确的事物,我们都在这个过程中不断的摸索,并找寻最终答案而已。


附:

解决大模型对话中的幻觉问题,可以考虑以下几个方面:

数据增强:通过在输入数据中添加噪声或随机性,增加模型的泛化能力,减少幻觉问题。例如,在文本生成过程中,可以通过随机插入停用词、改变词序、使用伪词等技术,使模型在训练过程中更加鲁棒。

模型微调:针对特定任务,对预训练大模型进行微调,使其更好地适应特定领域。通过微调,可以减少大模型对特定领域的泛化能力不足的问题,从而减少幻觉的产生。

引入注意力机制:注意力机制能够使模型更加关注重要的信息,减少对无关信息的关注,从而减少幻觉的产生。

调整模型架构:通过调整模型的架构,使模型能够更好地处理对话任务中的信息,避免幻觉问题的出现。例如,可以增加模型的语言表达能力、记忆能力等。

实时反馈:对于用户的反馈,可以在一定程度上控制模型的幻觉行为。例如,如果用户表示不喜欢某个选项,则模型可以在下一个选项中更倾向于选择用户喜欢的选项。

验证和测试:在应用大模型进行对话生成之前,需要对其进行充分的验证和测试,以确保其在实际应用中能够满足用户需求,避免幻觉问题的出现。

相关文章
|
22天前
|
人工智能 自然语言处理 前端开发
基于RAG和LLM的水利知识大语言模型系统开发有感
在数字化时代,水利行业的智能化管理尤为重要。本文介绍了基于大语言模型(LLM)和检索增强生成(RAG)技术的水利知识问答系统的开发过程。该系统结合了前沿AI技术和水利专业知识,通过构建全面的水利知识库,优化用户体验,确保系统的灵活性和可扩展性。项目展示了AI技术在垂直领域的巨大潜力,为水利行业的智能化发展贡献力量。
|
3月前
|
人工智能 自然语言处理
FBI-LLM低比特基础大语言模型来了,首个完全从头训练的二值化语言模型
【8月更文挑战第22天】《FBI-LLM:通过自回归蒸馏从头开始扩展全二值化大语言模型》由Ma等学者发布于arXiv。该研究呈现了首个完全从头训练的全二值化大语言模型FBI-LLM,在不牺牲性能的前提下大幅降低计算资源需求。通过自回归蒸馏技术,FBI-LLM在多种任务上展现出与高精度模型相当的表现,为二值化模型的发展开辟新路径,并有望推动专用硬件的进步。研究者公开了所有相关资源以促进领域内的进一步探索。
55 10
|
1月前
|
人工智能 API 调度
大语言模型 LLM 管理功能特点解析
大语言模型领域正快速发展,涵盖技术革新、跨领域应用及行业影响。随着技术进步,更多创新性AI应用和服务涌现。Botnow加速迭代AI应用开发平台,赋能各行各业。新发布的模型管理功能包括模型仓库和模型服务,支持模型文件托管、部署及推理服务,提升使用效率,降低成本。模型服务具备本地推理和接入外部模型的能力,满足中大型企业对大语言模型自主可控的需求。
|
3月前
|
安全 异构计算
为大型语言模型 (LLM) 提供服务需要多少 GPU 内存?
为大型语言模型 (LLM) 提供服务需要多少 GPU 内存?
135 0
为大型语言模型 (LLM) 提供服务需要多少 GPU 内存?
|
3月前
|
存储 人工智能 自然语言处理
|
3月前
|
SQL 监控 测试技术
|
3月前
|
机器学习/深度学习 人工智能 搜索推荐
歌发布专用于个人健康的大语言模型PH-LLM
【8月更文挑战第8天】谷歌推出个人健康大语言模型(PH-LLM),利用个人健康数据提供定制化建议。通过三大数据集评估,PH-LLM在睡眠和健身场景中表现出色,多项选择题测试中正确率分别达79%和88%,超越专家平均水平。它还能预测自我报告的睡眠质量,性能媲美专业模型。尽管如此,PH-LLM仍需克服可靠性、复杂性等挑战。此模型标志着AI在个人健康管理上的重要进展。[论文](https://arxiv.org/abs/2406.06474)
56 1
|
4月前
|
人工智能 算法 数据挖掘
语义熵识破LLM幻觉!牛津大学新研究登Nature
【7月更文挑战第22天】牛津大学研究者在Nature发布"使用语义熵检测大模型幻觉"。语义熵新方法有效识别大模型(LLMs)生成的不实或误导信息,通过聚类分析不同回答的语义等价性并计算概率,展示超越基线的幻觉检测能力,提升LLMs的可靠性。
133 7
|
4月前
|
算法 API 数据中心
魔搭社区利用 NVIDIA TensorRT-LLM 加速开源大语言模型推理
魔搭社区于 2022 年 11 月初创建,首次在业界提出了 “模型即服务”( MaaS, Model as a Service)的理念。
|
3月前
|
机器学习/深度学习 自然语言处理 索引
AIGC:LLM大型语言模型是怎么交流的? ———分词
AIGC:LLM大型语言模型是怎么交流的? ———分词

热门文章

最新文章