语义熵识破LLM幻觉!牛津大学新研究登Nature

简介: 【7月更文挑战第22天】牛津大学研究者在Nature发布"使用语义熵检测大模型幻觉"。语义熵新方法有效识别大模型(LLMs)生成的不实或误导信息,通过聚类分析不同回答的语义等价性并计算概率,展示超越基线的幻觉检测能力,提升LLMs的可靠性。

近日,一项由牛津大学研究人员领衔的突破性研究在人工智能领域引起了广泛关注。该研究以“Detecting hallucinations in large language models using semantic entropy”为题,发表在了国际顶级学术期刊《自然》(Nature)上。这项研究提出了一种名为“语义熵”的方法,用于检测大型语言模型(LLMs)中的幻觉(hallucinations),为提高LLMs的可靠性和准确性提供了新的思路。

LLMs是近年来人工智能领域的重要突破,它们能够生成连贯的文本,回答问题,甚至进行对话。然而,随着LLMs的广泛应用,人们发现它们有时会产生不准确或误导性的回答,这被称为幻觉。幻觉是指LLMs生成的内容与提供的信息不符,或者完全是错误的。这给LLMs的可靠性和实用性带来了挑战。

为了解决这个问题,研究人员提出了一种基于语义熵的方法来检测幻觉。语义熵是一种用于衡量文本中不确定性的指标。在这项研究中,研究人员使用语义熵来衡量LLMs生成的文本中是否存在不一致或任意性。

具体来说,研究人员首先生成了多个可能的回答,然后使用一种基于语义等价性的算法将这些回答聚类。如果两个回答在语义上是等价的,即它们表达了相同的意思,那么它们将被归为同一个聚类。然后,研究人员计算了每个聚类的概率,并使用这些概率来估计语义熵。

通过比较语义熵和基线方法(如简单的熵估计)的性能,研究人员发现语义熵在检测幻觉方面具有显著优势。语义熵能够更准确地识别出LLMs生成的文本中的不一致性,从而帮助系统避免回答可能产生幻觉的问题。

此外,研究人员还发现,语义熵在检测幻觉时具有鲁棒性,即它对不同的LLMs和领域都有效。这表明语义熵可以成为一种通用的方法,用于提高各种LLMs的可靠性和准确性。

然而,这项研究也存在一些局限性。首先,语义熵的计算需要大量的计算资源和时间,这可能会限制其在实际应用中的可行性。其次,语义熵的准确性取决于对语义等价性的准确判断,而这仍然是一个具有挑战性的问题。

论文地址:https://www.nature.com/articles/s41586-024-07421-0

目录
相关文章
|
2月前
|
人工智能
谷歌苹果曝出LLM惊人内幕,自主识别错误却装糊涂!AI幻觉背后藏着更大秘密
谷歌和苹果的研究揭示了大型语言模型(LLM)的惊人秘密:尽管LLM能自主识别错误,却在生成答案时装作不知情。这一“幻觉”现象背后,模型内部已编码了关于输出真实性的信息,但其外部表现与内部判断常有矛盾,暴露出LLM在实际应用中的局限性。研究为未来开发更有效的错误检测和缓解策略提供了新思路。论文地址:https://arxiv.org/pdf/2410.02707
74 30
|
5月前
|
人工智能 自然语言处理 数据库
基于RAG和LLM的水利知识问答系统研究
随着全球水资源紧张加剧,我国面临严峻的水资源管理挑战。《十四五规划》提出构建智慧水利体系,通过科技手段提升水情测报和智能调度能力。基于大语言模型(LLM)的水利智能问答系统,利用自然语言处理技术,提供高效、准确的水利信息查询和决策支持,助力水资源管理智能化。该系统通过RAG技术和Agent功能,实现了对水利知识的深度理解和精准回答,适用于水利知识科普、水务治理建议及灾害应急决策等多个场景,推动了水利行业的信息化和智能化发展。
|
7天前
|
物联网
LLM破局泛化诊断难题,MSSP刊登北航PHM实验室健康管理大模型交叉研究
北航PHM实验室提出了一种基于大型语言模型(LLM)的轴承故障诊断框架,结合传统诊断技术,解决了跨条件适应性、小样本学习和跨数据集泛化等问题。该框架通过信号特征量化方法提取振动数据的语义信息,并采用LoRA和QLoRA微调预训练模型,显著提升了诊断模型的泛化能力。实验结果显示,在跨数据集训练中,模型准确性提升了约10%,相关成果发表于《Mechanical Systems and Signal Processing》期刊。尽管存在计算资源需求高等挑战,该研究为旋转机械的高效维护提供了新思路。
23 2
|
5月前
|
机器学习/深度学习 人工智能
昂贵LLM的救星?Nature新研究提出新型忆阻器,比Haswell CPU高效460倍
【10月更文挑战第11天】《自然》杂志最新研究介绍了一种新型忆阻器——线性对称自选14位动能分子忆阻器。该技术在神经网络训练和推理中表现出线性对称的权重更新、460倍于现有CPU的高能效及多级编程能力,有望大幅提升AI硬件的能源效率。尽管前景广阔,但仍需解决制造工艺复杂和环境影响等问题。
79 1
|
2月前
|
自然语言处理
Nature:人类亲吻难题彻底难倒LLM,所有大模型全部失败!LLM根本不会推理,只是工具
近期,《自然》杂志发表的研究显示,所有大型语言模型(LLM)在解释特定情境下人类亲吻行为时均失败。尽管LLM在语言处理和文本生成上表现出色,但在理解和推理复杂人类行为方面存在显著限制,表明其缺乏对人类情感、社会及文化背景的深入理解。专家认为LLM更像是工具而非智能体,虽在客户服务、内容创作等领域有价值,但在复杂推理和理解方面仍显不足。
88 37
|
1月前
|
人工智能 自然语言处理 算法
LLM为何频频翻车算术题?最新研究追踪单个神经元,大脑短路才是根源
最新研究揭示,大型语言模型(LLM)在解决算术问题时依赖于一组稀疏的重要神经元,这些神经元实现简单的启发式算法,而非稳健的算法或记忆训练数据。通过因果分析,研究人员发现这些启发式算法的组合是LLM产生正确算术答案的主要机制,并在训练早期就已形成。这为改进LLM的算术能力提供了新方向。论文地址:https://arxiv.org/abs/2410.21272
52 10
|
7天前
|
人工智能 机器人
D1net阅闻 | 谷歌DeepMind研究发现LLM新特性
D1net阅闻 | 谷歌DeepMind研究发现LLM新特性
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
AI自己长出了类似大脑的脑叶?新研究揭示LLM特征的惊人几何结构
近年来,大型语言模型(LLM)的内部运作机制备受关注。麻省理工学院的研究人员在论文《The Geometry of Concepts: Sparse Autoencoder Feature Structure》中,利用稀疏自编码器(SAE)分析LLM的激活空间,揭示了其丰富的几何结构。研究发现,特征在原子、大脑和星系三个尺度上展现出不同的结构,包括晶体结构、中尺度模块化结构和大尺度点云结构。这些发现不仅有助于理解LLM的工作原理,还可能对模型优化和其他领域产生重要影响。
100 25
|
4月前
|
自然语言处理 算法
RAG真能提升LLM推理能力?人大最新研究:数据有噪声,RAG性能不升反降
随着大型语言模型(LLM)在自然语言处理领域的广泛应用,检索增强生成(RAG)技术因能引入新知识和减少幻觉而受到关注。然而,RAG对LLM推理能力的实际提升效果仍存争议。中国人民大学的一项研究表明,RAG虽能辅助LLM推理,但在处理含噪信息和深度推理时面临挑战。为此,研究团队提出了DPrompt tuning方法,旨在解决噪声问题并提升RAG性能。
97 12
|
4月前
|
JSON 数据可视化 NoSQL
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
本文介绍了LangChain的LLM Graph Transformer框架,探讨了文本到图谱转换的双模式实现机制。基于工具的模式利用结构化输出和函数调用,简化了提示工程并支持属性提取;基于提示的模式则为不支持工具调用的模型提供了备选方案。通过精确定义图谱模式(包括节点类型、关系类型及其约束),显著提升了提取结果的一致性和可靠性。LLM Graph Transformer为非结构化数据的结构化表示提供了可靠的技术方案,支持RAG应用和复杂查询处理。
261 2
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践

热门文章

最新文章