大模型升级与设计之道:ChatGLM、LLAMA、Baichuan及LLM结构解析(上)

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 大模型升级与设计之道:ChatGLM、LLAMA、Baichuan及LLM结构解析(上)



本文通过深入剖析ChatGLM、LLAMA和Baichuan模型的升级路径,以及探讨大型语言模型结构选型,为大家提供了一个系统性的视角,梳理了大型预训练模型的关键要素。我们希望这些知识能够为大家在实际工程中构建更强大、灵活且高效的大型预训练模型提供有力的参考和指导。



引言


目前大语言模型在各个领域取得了显著的突破,从ChatGLM、LLAMA到Baichuan等,它们在处理各种自然语言任务时展现出了惊人的性能。然而,随着研究的深入和应用需求的不断扩大,这些大型模型需要不断地进行升级和优化,以满足更高的性能要求和更广泛的应用场景。


在这个过程中,作为研究者和从业者,我们需要深入探讨:大型模型的升级之路是怎样的?升级过程中面临哪些挑战?又是通过怎样的手段和方法实现升级的?本篇博客旨在对此进行深入探讨,梳理ChatGLM、LLAMA和Baichuan等模型的升级过程,分析其背后的原因,并展示大型模型如何优化实现升级。

ChatGLM升级之路

首先对比下ChatGLM升级前后各大榜单结果,ChatGLM-6B较ChatGLM2-6B模型在各个榜单中都取得了近20-30%的提升:

 MMLU

Chat 模型使用 zero-shot CoT (Chain-of-Thought) 的方法测试,Base 模型使用 few-shot answer-only 的方法测试


 C-Eval

Chat 模型使用 zero-shot CoT 的方法测试,Base 模型使用 few-shot answer only 的方法测试


 GSM8K


所有模型均使用 few-shot CoT 的方法测试,CoT prompt 来自 http://arxiv.org/abs/2201.11903 使用翻译 API 翻译了 GSM8K 中的 500 道题目和 CoT prompt 并进行了人工校对


 BBH



所有模型均使用 few-shot CoT 的方法测试,CoT prompt 来自 https://github.com/suzgunmirac/BIG-Bench-Hard/tree/main/cot-prompts


 ChatGLM


ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答。


 General Language Model (GLM) 架构地址:https://github.com/THUDM/GLM


相关解析见: https://zhuanlan.zhihu.com/p/627832567?spm=ata.21736010.0.0.1ee417b1JxcVsy


 ChatGLM2

ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:

  1. 更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。
  2. 更长的上下文:基于 FlashAttention 技术,我们将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练。对于更长的上下文,我们发布了 ChatGLM2-6B-32K 模型。LongBench 的测评结果表明,在等量级的开源模型中,ChatGLM2-6B-32K 有着较为明显的竞争优势。
  3. 更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。
  4. 更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在填写问卷进行登记后亦允许免费商业使用


ChatGLM-6B 地址: https://github.com/THUDM/ChatGLM-6BGLM 地址: https://github.com/THUDM/GLM评测结果地址: https://github.com/THUDM/ChatGLM2-6B#%E8%AF%84%E6%B5%8B%E7%BB%93%E6%9E%9CFlashAttention地址: https://github.com/Dao-AILab/flash-attentionLongBench 地址: https://github.com/THUDM/LongBenchMulti-Query Attention 地址: https://arxiv.org/abs/1911.02150


 升级过程


  • 模型结构


模型结构改变:从Prefix-LM回归纯粹的Decoder-Only结构,即SFT过程所有的都通过gMASK在开头进行生成;


代码对比如下:


图示如下:


ChatGLM2:

那么这种改变能够带来什么呢?

答案就是为模型的训练效率带来了极大的提升。

图片来源:https://github.com/THUDM/ChatGLM2-6B/issues/16



在处理多轮对话的过程中,设有3轮对话,Q1A1,Q2A2,Q3A3,PrefixLM需要构建三条样本:

  1. Q1->A1
  2. Q1A1Q2->A2
  3. Q1A1Q2A2Q3->A3


而这种数据构建方式带来了严重的数据膨胀问题,影响模型训练的效率。


相反,Decoder-Only模型则可以利用Causal Mask的特性(每一个Token可以看到前面所有Token的真实输入),在一条样本中实现多轮对话: 


  1. 样本构建:Q1 A1  Q2 A2  Q3 A3
  2. Loss计算:只需要计算 A1  A2  和 A3 部分


再仔细回顾下,对话session级别训练和拆开训练从原理上有啥区别?

1. session级别训练,效果之一为等价batchsize变大(1个batch可以塞下更多样本),且同一通对话产生的样本在一个bs内。

  1. session级别的不同轮次产生的梯度是求平均的,拆开轮次构造训练是求和的,这样除了等价于lr会变大,还会影响不同轮次token权重的分配,另外还会影响norm的计算。


我们用一个简化地例子定量分析下,我们假设两条训练样本分为

1.问:A 答:xx

2.问: A 答:xx 问: B 答:xx  问: C 答:xx


则session级别训练影响梯度为 (Ga+(Ga + Gb + Gc)/3 )/2。对 A,B,C影响的权重分别为,2/3 1/6 1/6。


拆开训练为 (Ga+Ga+ (Ga + Gb)/2 +(Ga + Gb + Gc)/3)/4。对 A,B,C影响的权重分别为,17/24 5/24 1/12。


从上面的权重分布来看,session级别靠后的轮次影响权重要比拆开更大。这也是更合理的,因为大部分场景下,开场白都是趋同和重复的。

  • 序列长度


序列长度:预训练模型在32K长度训练,SFT微调模型在8K长度训练;


此外,7月31号智谱AI发布了基于ChatGLM2-6B的基础上微调的针对长上下文优化的大模型ChatGLM2-6B-32K,能够更好的处理最多32K长度的上下文。
此前,ChatGLM2-6B刚发布的时候,官方宣称该模型最高支持32K长上下文输入,但是LM-SYS官方测试显示ChatGLM2-6B在超过8K长度时候表现很糟糕: 支持超长上下文输入的大语言模型评测和总结——ChatGLM2-6B表现惨烈,最强的依然是商业模型GPT-3.5与Claude-1.3 (地址:https://www.datalearner.com/blog/1051688222070709)。


具体来说,ChatGLM2-6B-32K基于位置插值(Positional Interpolation)的方法对位置编码进行了更新,并在对话阶段使用 32K 的上下文长度训练。在实际的使用中,官方推荐如果上下文长度基本在 8K 以内,建议使用ChatGLM2-6B;如果需要处理超过 8K 的上下文长度,推荐使用ChatGLM2-6B-32K。

关于位置插值的介绍,可见博客:RoPE旋转位置编码深度解析:理论推导、代码实现、长度外推(地址:https://zhuanlan.zhihu.com/p/645263524


ChatGLM2-6B 地址:https://www.datalearner.com/ai-models/pretrained-models/ChatGLM2-6B


  • 算子优化


算子优化:Flash Attention、Multi-Query Attention提高训练&推理的速度;


本次ChatGLM2-6B上下文从2k扩展到了32k同时也应用了一种叫做 FlashAttention 的技术。flash-attention是一种快速、高效、可扩展的注意力机制,它利用了一种称为哈希感知(hash-aware)的技术,可以根据它们的相似性将输入序列中的元素分配到不同的桶(bucket)中。这样,模型只需要计算桶内元素之间的注意力权重,而不是整个序列。这大大减少了计算量和内存需求,同时保持了较高的精度和表达能力。

LLAMA升级之路


首先对比下LLAMA升级前后各大榜单结果,LLAMA2较LLAMA模型在各个榜单中取得了近10-30%的提升:

MMLU


GSM8K



 LLAMA
LLaMA(Large Language Model Meta AI),由 Meta AI 发布的一个开放且高效的大型基础语言模型,共有 7B13B33B65B(650 亿)四种版本。其数据集来源都是公开数据集,无任何定制数据集,保证了其工作与开源兼容和可复现,整个训练数据集在 token 化之后大约包含 1.4T 的 token。
关于模型性能,LLaMA 的性能非常优异:具有 130 亿参数的 LLaMA 模型「在大多数基准上」可以胜过 GPT-3( 参数量达 1750 亿),而且可以在单块 V100 GPU 上运行;而最大的 650 亿参数的 LLaMA 模型可以媲美谷歌的 Chinchilla-70B 和 PaLM-540B。
关于训练集,其来源都是公开数据集,无任何定制数据集,保证了其工作与开源兼容和可复现。整个训练数据集在 token 化之后大约包含 1.4T 的 token。其中,LLaMA-65B 和 LLaMA-33B 是在 1.4万亿个 token 上训练的,而最小的模型 LLaMA-7B 是在 1万亿个 token 上训练的。
模型结构

  1. PreLayerNorm-RMSNorm-Root Mean Square Layer Normalization
  2. ROPE旋转位置编码(替换绝对/相对位置编码)
  3. SwiGLU激活函数(替换ReLU)-GLU Variants Improve Transformer


 LLAMA2

官方页面上的介绍如下:


模型结构上,主要升级两点:

  1. 训练数据Token数量从1.4T->2T
  2. 序列长度从2K->4K


SFT过程中,LLAMA2强调数据质量的重要性,通过2W的高质量指令数据,激发模型的指令遵循能力。


RLHF过程中,LLAMA2做了较多工作,对RLHF过程作出了进一步的解释。自建了100W的Reward数据集,训练了两个独立的Reword Model。


整个LLAMA2的论文解读如下:


LLAMA2-Chat模型的训练过程如下图,主要包含预训练、SFT、RLHF三个步骤:


  • 预训练


LLAMA2的主要提升点包括:更强大的数据清洗,更新数据组合,增加40%的总训练tokens,加倍上下文长度,以及使用分组查询注意力(GQA)来提高更大模型的推理可扩展性


模型结构:

  1. RMSNorm
  2. SwiGLU
  3. RoPE
  4. 4K序列长度
  5. 分组查询注意力GQA(33B/70B)


  • SFT


作者发现许多第三方SFT数据集在多样性和质量方面不足,因此他们专注于收集自己的高质量SFT数据。


他们观察到,与使用来自第三方数据集的数百万例子相比,从他们自己的供应商为基础的标注工作中使用较少但质量更高的例子可以显著提高结果。他们发现,数以万计的SFT注释足以实现高质量结果,共收集了27,540个注释。


  • RLHF


我们主要挑三个核心步骤介绍:数据收集、奖励模型、迭代训练。


人类偏好数据收集



偏好数据如表6所示,其中包含了140WMeta自建的数据集,相比于开源数据集,自建数据集的轮次、对话长度更长。


奖励模型


LLAMA2训练了两个独立的奖励模型(Helpfulness RM/Safety RM)。


动机:有研究发现(Bai等人,2022a),有时候有用性和安全性之间会存在权衡,这使得单一的奖励模型在这两方面的表现上可能会面临挑战。
为了解决这个问题,作者训练了两个独立的奖励模型,一个针对有用性进行优化(称为有用性奖励模型,Helpfulness RM),另一个针对安全性进行优化(称为安全性奖励模型,Safety RM)。这样可以分别在有用性和安全性方面取得更好的效果,使得Llama 2-Chat在强化学习人类偏好(RLHF)过程中更好地符合人类偏好,提高生成回答的有用性和安全性。

损失函数

边界m(r)是关于偏好评分的离散函数。作者对那些响应差距较大的的对使用较大的边界,而对那些响应相似的对使用较小的边界(如表27所示)。作者发现这种边界分量可以提高有用性奖励模型的准确性,特别是在两个反应差距更大的样本中。


迭代训练


LLAMA2采用了两种强化学习算法:PPO和拒绝采样算法。
这两种强化学习算法主要区别在于:

  1. 广度:在拒绝采样中,模型为给定的提示探索K个样本,而在PPO中,只有一个生成过程。
  2. 深度:在PPO中,训练过程中第t步的样本是经过t-1步梯度更新后的模型策略的函数。在拒绝采样微调中,在模型的初始策略下采样所有输出以收集新数据集,然后类似于SFT进行微调。然而,由于采用了迭代模型更新,这两种算法之间的本质区别并不明显。


LLAMA2直到RLHF (V4),仅使用拒绝采样微调。之后将这两种方法结合起来,先对拒绝采样检查点应用PPO,然后再对采样进行拒绝采样。LLAMA2只使用最大的70B Llama 2-Chat模型进行拒绝采样。其他较小的模型则在更大模型的拒绝采样数据上进行微调,从而将大模型的能力转移到较小的模型中。



更多精彩内容,欢迎观看:

大模型升级与设计之道:ChatGLM、LLAMA、Baichuan及LLM结构解析(下):

https://developer.aliyun.com/article/1396386

相关文章
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
AI自己长出了类似大脑的脑叶?新研究揭示LLM特征的惊人几何结构
近年来,大型语言模型(LLM)的内部运作机制备受关注。麻省理工学院的研究人员在论文《The Geometry of Concepts: Sparse Autoencoder Feature Structure》中,利用稀疏自编码器(SAE)分析LLM的激活空间,揭示了其丰富的几何结构。研究发现,特征在原子、大脑和星系三个尺度上展现出不同的结构,包括晶体结构、中尺度模块化结构和大尺度点云结构。这些发现不仅有助于理解LLM的工作原理,还可能对模型优化和其他领域产生重要影响。
58 25
|
2天前
|
存储 缓存 人工智能
深度解析CPFS 在 LLM 场景下的高性能存储技术
本文深入探讨了CPFS在大语言模型(LLM)训练中的端到端性能优化策略,涵盖计算端缓存加速、智能网卡加速、数据并行访问及数据流优化等方面。重点分析了大模型对存储系统的挑战,包括计算规模扩大、算力多样性及数据集增长带来的压力。通过分布式P2P读缓存、IO加速、高性能存算通路技术以及智能数据管理等手段,显著提升了存储系统的吞吐量和响应速度,有效提高了GPU利用率,降低了延迟,从而加速了大模型的训练进程。总结了CPFS在AI训练场景中的创新与优化实践,为未来大模型发展提供了有力支持。
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
50 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
|
13天前
|
网络协议 安全 网络安全
探索网络模型与协议:从OSI到HTTPs的原理解析
OSI七层网络模型和TCP/IP四层模型是理解和设计计算机网络的框架。OSI模型包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,而TCP/IP模型则简化为链路层、网络层、传输层和 HTTPS协议基于HTTP并通过TLS/SSL加密数据,确保安全传输。其连接过程涉及TCP三次握手、SSL证书验证、对称密钥交换等步骤,以保障通信的安全性和完整性。数字信封技术使用非对称加密和数字证书确保数据的机密性和身份认证。 浏览器通过Https访问网站的过程包括输入网址、DNS解析、建立TCP连接、发送HTTPS请求、接收响应、验证证书和解析网页内容等步骤,确保用户与服务器之间的安全通信。
60 1
|
24天前
|
人工智能 数据挖掘
AI长脑子了?LLM惊现人类脑叶结构并有数学代码分区,MIT大牛新作震惊学界!
麻省理工学院的一项新研究揭示了大型语言模型(LLM)内部概念空间的几何结构,与人脑类似。研究通过分析稀疏自编码器生成的高维向量,发现了概念空间在原子、大脑和星系三个层次上的独特结构,为理解LLM的内部机制提供了新视角。论文地址:https://arxiv.org/abs/2410.19750
67 12
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深挖大模型幻觉!哈佛大学最新报告:LLM等价于众包,只是在输出网络共识
大型语言模型(LLM)如ChatGPT正改变人机交互,但在生成看似真实的错误信息方面存在“幻觉”问题。这种现象源于LLM依赖统计概率而非语义理解,导致在处理争议或冷门话题时易出错。研究显示,LLM的准确性高度依赖于训练数据的质量和数量。尽管如此,LLM仍具巨大潜力,需持续优化并保持批判性使用。
51 12
|
2月前
|
人工智能 自然语言处理
大模型在装傻!谷歌苹果最新发现:LLM知道但不告诉你,掌握知识比表现出来的多
在AI领域,大模型(LLM)展现出了惊人的进步,但在谷歌和苹果的最新研究中,发现这些模型有时会故意“装傻”,即使已知正确答案也不告知用户。这种“隐藏智慧”现象揭示了大模型可能具备超出表面表现的深层能力,对AI评估与应用提出了新挑战,同时也带来了设计更高效模型的新机遇。论文链接:https://arxiv.org/pdf/2410.02707
46 11
|
2月前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
103 2
|
2月前
|
存储 安全 Linux
Golang的GMP调度模型与源码解析
【11月更文挑战第11天】GMP 调度模型是 Go 语言运行时系统的核心部分,用于高效管理和调度大量协程(goroutine)。它通过少量的操作系统线程(M)和逻辑处理器(P)来调度大量的轻量级协程(G),从而实现高性能的并发处理。GMP 模型通过本地队列和全局队列来减少锁竞争,提高调度效率。在 Go 源码中,`runtime.h` 文件定义了关键数据结构,`schedule()` 和 `findrunnable()` 函数实现了核心调度逻辑。通过深入研究 GMP 模型,可以更好地理解 Go 语言的并发机制。
|
2月前
|
自然语言处理 开发者
多模态大模型LLM、MLLM性能评估方法
针对多模态大模型(LLM)和多语言大模型(MLLM)的性能评估,本文介绍了多种关键方法和标准,包括模态融合率(MIR)、多模态大语言模型综合评估基准(MME)、CheckList评估方法、多模态增益(MG)和多模态泄露(ML),以及LLaVA Bench。这些方法为评估模型的多模态和多语言能力提供了全面的框架,有助于研究者和开发者优化和改进模型。
147 5

热门文章

最新文章

推荐镜像

更多