YOLOv5改进 | 融合改进篇 | BiFPN+ RepViT(教你如何融合改进机制)

简介: YOLOv5改进 | 融合改进篇 | BiFPN+ RepViT(教你如何融合改进机制)

一、本文介绍

本文给大家带来的改进机制是融合改进,最近有好几个读者和我反应单独的机制都能够涨点,一融合起来就掉点,这是大家不了解其中的原理(这也是为什么我每一个机制都给大家讲解一下原理,大家要明白其中的每个单独的机制涨点原理然后才能够更好的融合,有一些结构是有冲突的),不知道哪些模块和那些模块融合起来才能够涨点。所以本文给大家带来的改进机制是融合 BiFPN+ RepViT的融合改进机制,实现大幅度涨点进行二次创新

专栏目录:YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

后期我会提供包含上百个改进机制和五十余种有效的融合改进机制,而且我会教大家如何去融合模块,才能够涨点,大家自己融合模块一些无效的融合可能会导致模型不收敛。

二、RepViT基本原理

image.png

RepViT: Revisiting Mobile CNN From ViT Perspective 这篇论文探讨了如何改进轻量级卷积神经网络(CNN)以提高其在移动设备上的性能和效率。作者们发现,虽然轻量级视觉变换器(ViT)因其能够学习全局表示而表现出色,但轻量级CNN和轻量级ViT之间的架构差异尚未得到充分研究。因此,他们通过整合轻量级ViT的高效架构设计,逐步改进标准轻量级CNN(特别是MobileNetV3),从而创造了一系列全新的纯CNN模型,称为RepViT。这些模型在各种视觉任务上表现出色,比现有的轻量级ViT更高效。

其主要的改进机制包括:

  1. 结构性重组:通过结构性重组(Structural Re-parameterization, SR),引入多分支拓扑结构,以提高训练时的性能。
  2. 扩展比率调整:调整卷积层中的扩展比率,以减少参数冗余和延迟,同时提高网络宽度以增强模型性能。
  3. 宏观设计优化:对网络的宏观架构进行优化,包括早期卷积层的设计、更深的下采样层、简化的分类器,以及整体阶段比例的调整。
  4. 微观设计调整:在微观架构层面进行优化,包括卷积核大小的选择和压缩激励(SE)层的最佳放置。

这些创新机制共同推动了轻量级CNN的性能和效率,使其更适合在移动设备上使用,下面的是官方论文中的结构图,我们对其进行简单的分析。 image.png

每个阶段的通道维度用 Ci 表示,批处理大小用 B 表示。

  • Stem:用于预处理输入图像的模块。
  • Stage1-4:每个阶段由多个RepViTBlock组成,以及一个可选的RepViTSEBlock,包含深度可分离卷积(3x3DW),1x1卷积,压缩激励模块(SE)和前馈网络(FFN)。每个阶段通过下采样减少空间维度。
  • Pooling:全局平均池化层,用于减少特征图的空间维度。
  • FC:全连接层,用于最终的类别预测。

总结:大家可以将RepViT看成是MobileNet系列的改进版本

三、BiFPN原理

image.png

2.1 BiFPN的基本原理

BiFPN(Bidirectional Feature Pyramid Network),双向特征金字塔网络是一种高效的多尺度特征融合网络,它在传统特征金字塔网络(FPN)的基础上进行了优化。主要特点包括:

1. 高效的双向跨尺度连接:BiFPN通过在自顶向下和自底向上路径之间建立双向连接,允许不同尺度特征间的信息更有效地流动和融合。

2. 简化的网络结构:BiFPN通过删除只有一个输入边的节点、在同一层级的输入和输出节点间添加额外边,以及将每个双向路径视为一个特征网络层并重复多次,来优化跨尺度连接。

3. 加权特征融合:BiFPN引入了可学习的权重来确定不同输入特征的重要性,从而提高了特征融合的效果。

我们可以将其基本原理概括分为以下几点:

1. 双向特征融合:BiFPN允许特征在自顶向下和自底向上两个方向上进行融合,从而更有效地结合不同尺度的特征。

2. 加权融合机制:BiFPN通过为每个输入特征添加权重来优化特征融合过程,使得网络可以更加重视信息量更大的特征。

3. 结构优化:BiFPN通过移除只有一个输入边的节点、添加同一层级的输入输出节点之间的额外边,并将每个双向路径视为一个特征网络层,来优化跨尺度连接。

我将通过下图为大家对比展示BiFPN与其他四种不同特征金字塔网络设计的不同以及BiFPN如何更有效地整合特征

image.png

(a) FPN (Feature Pyramid Network): 引入了自顶向下的路径来融合从第3层到第7层(P3 - P7)的多尺度特征。 (b) PANet: 在FPN的基础上增加了自底向上的额外路径。 (c) NAS-FPN: 使用神经架构搜索(NAS)来找到不规则的特征网络拓扑,然后重复应用相同的块。 (d) BiFPN: 通过高效的双向跨尺度连接和重复的块结构,改进了准确度和效率之间的权衡。

我们可以看出BiFPN通过双向路径允许特征信息在不同尺度间双向流动,这种双向流动可以看做是在不同尺度之间进行有效信息交换。这样的设计旨在通过强化特征的双向流动来提升特征融合的效率和有效性,从而提高目标检测的性能。

2.2 双向特征融合

双向特征融合在BiFPN(双向特征金字塔网络)中指的是一种机制,它允许在特征网络层中的信息在自顶向下和自底向上两个方向上流动和融合。这种方法与传统的单向特征金字塔网络(如PANet)相比,能够在不同层级之间更高效地融合特征,而无需增加显著的计算成本。

在BiFPN中,每一条双向路径(自顶向下和自底向上)被视作一个单独的特征网络层,然后这些层可以被重复多次,以促进更高级别的特征融合。这样做的结果是一个简化的双向网络,它增强了网络对特征融合的能力,使网络能够更有效地利用不同尺度的信息,从而提高目标检测的性能。

下图展示的是EfficientDet架构的具体细节,其中包含了EfficientNet作为骨干网络(backbone),以及BiFPN作为特征网络的使用。在这个架构中,BiFPN层通过其双向特征融合的能力,从EfficientNet骨干网络接收多尺度的输入特征,然后生成用于对象分类和边框预测的富有表现力的特征。

image.png

在BiFPN层中,我们可以看到不同尺度的特征(P2至P7)如何通过上下双向路径进行融合。这种结构设计的目的是在保持计算效率的同时最大化特征融合的效果,以提高对象检测的整体性能。图中还显示了类别预测网络和边框预测网络,这些是在BiFPN特征融合后用于预测对象类别和定位对象边界框的网络部分。

2.3 加权融合机制

加权融合机制是BiFPN中用于改进特征融合效果的一种技术。在传统的特征金字塔网络中,所有输入特征通常在没有区分的情况下等同对待,这意味着不同分辨率的特征被简单地相加在一起,而不考虑它们对输出特征的不同贡献。然而,在BiFPN中,观察到由于不同的输入特征具有不同的分辨率,它们通常对输出特征的贡献是不等的

为了解决这个问题,BiFPN提出了为每个输入添加一个额外的权重,并让网络学习每个输入特征的重要性:

image.png

是一个可学习的权重,可以是标量(每个特征),向量(每个通道)或多维张量(每个像素)。这些权重是可学习的,可以是标量(针对每个特征),向量(针对每个通道),或者多维张量(针对每个像素)。这种加权融合方法可以在最小化计算成本的同时实现与其他方法可比的准确度。

2.4 结构优化

结构优化是为了在不同的资源约束下,通过复合缩放方法确定不同的层数,从而在保持效率的同时提高准确性。我们通过分析观察BiFPN的设计,其结构优化包括:

1. 简化的双向网络:通过优化结构,减少了网络中的节点数,特别是移除了那些只有一个输入边的节点。这种简化的直觉是如果一个节点没有进行特征融合,即它只有一个输入边,那么它对于融合不同特征的特征网络的贡献会更小。

2. 增加额外的边缘:在相同层级的原始输入和输出节点之间增加了额外的边缘,以便在不显著增加成本的情况下融合更多的特征。

3. 重复使用双向路径:与只有单一自顶向下和自底向上路径的PANet不同,BiFPN将每条双向(自顶向下和自底向上)路径视为一个特征网络层,并重复多次,以实现更高级别的特征融合。

目录
相关文章
|
6月前
|
机器学习/深度学习 编解码 文件存储
YOLOv8改进 | 融合改进篇 | BiFPN+ RepViT(教你如何融合改进机制)
YOLOv8改进 | 融合改进篇 | BiFPN+ RepViT(教你如何融合改进机制)
834 1
|
16天前
|
机器学习/深度学习 编解码 Java
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
《YOLO11目标检测创新改进与实战案例》专栏已更新100+篇文章,涵盖注意力机制、卷积优化、检测头创新、损失与IOU优化、轻量级网络设计等多方面内容。每周更新3-10篇,提供详细代码和实战案例,帮助您掌握最新研究和实用技巧。[专栏链接](https://blog.csdn.net/shangyanaf/category_12810477.html)
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
|
18天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目DWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取分为区域残差化和语义残差化两步,提高了特征提取效率。它引入了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,优化了不同网络阶段的感受野。在Cityscapes和CamVid数据集上的实验表明,DWRSeg在准确性和推理速度之间取得了最佳平衡,达到了72.7%的mIoU,每秒319.5帧。代码和模型已公开。
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
|
4月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 特征融合】 YOGA iAFF :注意力机制在颈部的多尺度特征融合
【YOLOv8改进 - 特征融合】 YOGA iAFF :注意力机制在颈部的多尺度特征融合
|
4月前
|
编解码 Go 文件存储
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
|
24天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
|
30天前
|
人工智能
采用8个64B模型进行的模型融合,效果如何呢?
【10月更文挑战第1天】论文解读:针对模型融合(Model Merging)中的AI模型数量、模型大小、模型能力、合并方法等因素的实验及结果
41 2
|
4月前
|
计算机视觉 网络架构
【YOLOv10改进-特征融合】YOLO-MS MSBlock : 分层特征融合策略
YOLOv10专栏介绍了YOLO-MS,一个优化多尺度目标检测的高效框架。YOLO-MS通过MS-Block和异构Kernel选择提升性能,平衡了计算复杂度与准确性。它在不依赖预训练的情况下,在COCO上超越同类模型,如YOLO-v7和RTMDet。MS-Block包含不同大小卷积的分支,用于增强特征表示。代码示例展示了MSBlock类的定义,用于处理不同尺度特征。该模块可应用于其他YOLO模型以提升性能。更多详情和配置参见相关链接。
|
1月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
本文介绍了将BiFPN网络应用于YOLOv8以增强网络性能的方法。通过双向跨尺度连接和加权特征融合,BiFPN能有效捕获多尺度特征,提高目标检测效果。文章还提供了详细的代码修改步骤,包括修改配置文件、创建模块文件、修改训练代码等,以实现YOLOv8与BiFPN的融合。
114 0
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
|
18天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合DWRSeg二次创新C3k2_DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2融合DWRSDWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取方法分解为区域残差化和语义残差化两步,提高了多尺度信息获取的效率。网络设计了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,分别用于高阶段和低阶段,以充分利用不同感受野的特征图。实验结果表明,DWRSeg在Cityscapes和CamVid数据集上表现出色,以每秒319.5帧的速度在NVIDIA GeForce GTX 1080 Ti上达到72.7%的mIoU,超越了现有方法。代码和模型已公开。

相关实验场景

更多