【YOLO11改进 - C3k2融合】C3k2融合DWRSeg二次创新C3k2_DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测

简介: 【YOLO11改进 - C3k2融合】C3k2融合DWRSDWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取方法分解为区域残差化和语义残差化两步,提高了多尺度信息获取的效率。网络设计了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,分别用于高阶段和低阶段,以充分利用不同感受野的特征图。实验结果表明,DWRSeg在Cityscapes和CamVid数据集上表现出色,以每秒319.5帧的速度在NVIDIA GeForce GTX 1080 Ti上达到72.7%的mIoU,超越了现有方法。代码和模型已公开。

介绍

摘要

许多当前的研究直接采用多速率深度扩张卷积,以同时从一个输入特征图中捕获多尺度上下文信息,从而提高实时语义分割的特征提取效率。然而,由于不合理的结构和超参数,这种设计可能导致难以获取多尺度上下文信息。为了降低获取多尺度上下文信息的难度,我们提出了一种高效的多尺度特征提取方法,将原来的单步方法分解为两个步骤:区域残差化-语义残差化。在这种方法中,多速率深度扩张卷积在特征提取中扮演了一个简单的角色:在第二步中基于第一步提供的每个简明区域形式的特征图,执行具有一个期望感受野的简单基于语义的形态滤波,以提高其效率。此外,还详细说明了每个网络阶段的扩张率和扩张卷积的容量,以充分利用所有可以实现的区域形式的特征图。相应地,我们分别为高层和低层网络设计了一个新颖的扩张残差(DWR)模块和一个简单反转残差(SIR)模块,并形成了一个强大的DWR分割(DWRSeg)网络。在Cityscapes和CamVid数据集上的大量实验表明,我们的方法通过在准确性和推理速度之间实现最先进的权衡,展示了其有效性,并且重量更轻。在没有预训练或使用任何训练技巧的情况下,我们在Cityscapes测试集上以每秒319.5帧的速度在一张NVIDIA GeForce GTX 1080 Ti显卡上达到了72.7%的mIoU,这超过了最新方法的69.5帧每秒的速度和0.8%的mIoU。代码和训练好的模型已公开可用。

YOLO11目标检测创新改进与实战案例专栏

点击查看文章目录: YOLO11创新改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

点击查看专栏链接: YOLO11目标检测创新改进与实战案例

文章链接

论文地址:论文地址

代码地址: 代码地址

基本原理

DWRSeg(Dilation-wise Residual Segmentation)是一种用于实时语义分割任务的网络架构,旨在提高特征提取效率和多尺度信息获取能力。以下是关于DWRSeg及其技术原理的详细介绍:

  • DWRSeg采用了一种高效的多尺度特征提取方法,将原始的单步方法分解为两步:区域残差化(Region Residualization)和语义残差化(Semantic Residualization)。这种方法利用多率扩张卷积(depth-wise dilated convolutions)在两个步骤中提取特征,以实现更高效的多尺度信息获取。
  • DWRSeg设计了一种新颖的Dilation-wise Residual(DWR)模块和Simple Inverted Residual(SIR)模块,分别用于网络的高阶段和低阶段。这些模块具有精心设计的感受野大小,以充分利用各个网络阶段的区域形式特征图。
  • DWRSeg的整体架构是基于编码器-解码器结构,包括干扰块、SIR模块的低阶段和两个DWR模块的高阶段。编码器用于特征提取,解码器用于生成最终预测结果,无需辅助监督。
  • DWRSeg通过精心调整整个网络的超参数,实现了在准确性和效率之间的最佳平衡。最终,DWRSeg报告了两个版本:DWRSeg-Base(DWRSeg-B)和DWRSeg-Large(DWRSeg-L)。

image-20240707153722534

  1. Dilation-wise Residual(DWR)模块:

    • 结构设计:DWR模块采用残差连接的设计,内部采用两步方法来高效地获取多尺度上下文信息。通过将之前的单步多尺度上下文信息获取方法分解为两步,实现了更高效的特征提取。
    • 功能:DWR模块主要用于网络的高阶段,通过两步特征提取方法获取多尺度上下文信息。首先进行区域残差化,然后进行语义残差化,最终将生成的特征图与原始特征图融合。
    • 特点:DWR模块的设计旨在充分利用不同感受野大小的特征图,以提高多尺度信息的获取效率。这种模块的引入有助于增强网络在语义分割任务中的性能。
  2. Simple Inverted Residual(SIR)模块:

    • 结构设计:SIR模块是从DWR模块调整而来,专门用于网络的低阶段。相比于DWR模块,SIR模块做了一些修改以满足低阶段的小感受野要求,以保持高效的特征提取。

    • 功能:SIR模块的结构简化了多分支扩张卷积结构,仅保留第一个分支用于压缩感受野大小。这样的设计有助于在低阶段保持高效的特征提取,同时满足小感受野的要求。

    • 特点:SIR模块的设计旨在在网络的低阶段保持高效的特征提取能力,同时避免过多的计算和复杂性。通过简化结构和保留关键特征,SIR模块有助于提高网络的整体性能。

核心代码

YOLO11引入代码

在根目录下的ultralytics/nn/目录,新建一个C3k2目录,然后新建一个以 C3k2_DWRSeg为文件名的py文件, 把代码拷贝进去。

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/143494332

相关文章
|
7天前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
36 3
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
7天前
|
机器学习/深度学习 编解码 计算机视觉
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为:Swin Transformer,提高多尺度特征提取能力
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为:Swin Transformer,提高多尺度特征提取能力
37 12
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为:Swin Transformer,提高多尺度特征提取能力
|
7天前
|
计算机视觉 Perl
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
38 10
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
|
8天前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
39 9
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
11天前
|
机器学习/深度学习 编解码 异构计算
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
41 11
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
|
9天前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 二次创新C3k2 改进颈部网络
YOLOv11改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 二次创新C3k2 改进颈部网络
25 6
YOLOv11改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 二次创新C3k2 改进颈部网络
|
7天前
|
机器学习/深度学习 编解码 异构计算
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
17 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
|
11天前
|
计算机视觉 Perl
YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
12 0
YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
|
11天前
|
机器学习/深度学习 编解码 计算机视觉
YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为:Swin Transformer,提高多尺度特征提取能力
YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为:Swin Transformer,提高多尺度特征提取能力
22 0
YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为:Swin Transformer,提高多尺度特征提取能力
|
2月前
|
运维 监控 安全
公司监控软件:SAS 数据分析引擎驱动网络异常精准检测
在数字化商业环境中,企业网络系统面临复杂威胁。SAS 数据分析引擎凭借高效处理能力,成为网络异常检测的关键技术。通过统计分析、时间序列分析等方法,SAS 帮助企业及时发现并处理异常流量,确保网络安全和业务连续性。
64 11

热门文章

最新文章