【数据结构与算法】5.详解双向链表的基本操作(Java语言实现)

简介: 【数据结构与算法】5.详解双向链表的基本操作(Java语言实现)


0. 前言

上一篇【数据结构与算法】4.自主实现单链表的增删查改 我们自主实现了单链表的操作,在Java的集合类中LinkedList底层实现是无头双向循环链表。所以今天我们模拟LinkedList的实现。

1. 双链表的定义

学习双链表之前,做个回顾。

单链表的特点:

  1. 我们可以轻松的到达下一个节点,但是回到前一节点是很难的。
  2. 只能从头遍历到尾或者从尾遍历到头(一般是从头到尾)

双链表的特点:

  1. 每次在插入或删除某个节点时, 需要处理四个节点的引用, 而不是两个. 实现起来要困难一些
  2. 相对于单向链表, 必然占用内存空间更大一些.
  3. 既可以从头遍历到尾, 又可以从尾遍历到头

双链表的定义:

双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱。所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点。

指针域(prev):用于指向当前节点的直接前驱节点;

数据域(data):用于存储数据元素;

指针域(next):用于指向当前节点的直接后继节点。

2. LinkedList 模拟实现

2.1 接口

public interface IList {
    //头插法
    public void addFirst(int data);
    //尾插法
    public void addLast(int data);
    //任意位置插入,第一个数据节点为0号下标
    public void addIndex(int index,int data);
    //查找是否包含关键字key是否在单链表当中
    public boolean contains(int key);
    //删除第一次出现关键字为key的节点
    public void remove(int key);
    //删除所有值为key的节点
    public void removeAllKey(int key);
    //得到单链表的长度
    public int size();
    // 清空链表
    public void clear();
    // 打印链表
    public void display();
}

2.2 定义双向链表类

static class ListNode {
  public int val; // 数值域 - 存放当前节点的值
  public ListNode next; // next域 指向下一个节点
  public ListNode prev; // prev域 指向上一个节点
  public ListNode(int val) {
    this.val = val;
  }
}

2.3 定义两个指针,分别指向头节点和尾节点

// 链表的属性 链表的头节点
public ListNode head; 
// 链表的属性 链表的尾节点
public ListNode last;

2.4 头插法

  1. 判断链表是否为空,如果为空,将新节点的node设置为头节点,将新节点的node设置为尾节点
head = node;
last = node;
  1. 如果链表不为空,将新节点的nodenext域设置为头节点,将当前头节点的prev设置为新节点的node,更新头节点为新节点的node
node.next = head;
head.prev = node;
head = node;

动画演示:

代码:

/**
* 头插法
* @param data
*/
@Override
public void addFirst(int data) {
  ListNode node = new ListNode(data);
  if (head == null) {
    head = node;
    last = node;
  }else {
    node.next = head;
    head.prev = node;
    head = node;
  }
}

2.5 尾插法

  1. 判断链表是否为空,如果为空,将新节点的node设置为头节点,将新节点的node设置为尾节点
head = node;
last = node;
  1. 如果链表不为空,将最后一个节点lastnext域指向新节点,新节点的prev域指向最后一个节点,更新尾节点为新节点
last.next = node;
node.prev = last;
last = node;

动画演示:

代码:

/***
     * 尾插法
     * @param data
     */
    @Override
    public void addLast(int data) {
        ListNode node = new ListNode(data);
        if (head == null) {
            head = node;
            last = node;
        } else {
            last.next = node;
            node.prev = last;
            last = node;
        }
    }

2.6 指定位置插入元素

  1. 判断索引idnex是否合法,如果不合法则抛出异常。
if (index < 0 || index > size()) {
  throw new IndexException("index不合法:" + index);
}
  1. 判断链表是否为空,如果为空则将新节点设置为头节点和尾节点
if (head == null) {
  head = node;
    last = node;
    return;
}
  1. 如果索引index == 0,则使用头插法,如果索引index = 链表长度,则使用尾插法
if (index == 0) {
    addFirst(data);
  return;
}
if (index == size()) {
    addLast(data);
  return;
}
  1. 找到索引节点(当前节点)
private ListNode findIndex(int index) {
        ListNode cur = head;
        while (index != 0) {
            cur = cur.next;
            index--;
        }
        return cur;
    }
  1. 将新节点的next域指向当前节点,新节点的prev域指向当前节点的前一个节点,当前节点的prev域指向新节点,更新新节点的上一个节点的next域指向当前节点。
ListNode cur = findIndex(index);
node.next = cur;
node.prev = cur.prev;
cur.prev = node;
node.prev.next = node;

动画演示:

2.7 查找指定元素

  1. 从头节点开始遍历链表,如果当前节点的值与要查找的key相等,则返回ture,如果不相等则移动下一个节点继续查找。如果遍历完链表都没有找到key则返回false.

代码:

@Override
    public boolean contains(int key) {
        ListNode cur = head;
        while (cur != null) {
            if (cur.val == key) {
                return true;
            }
            cur = cur.next;
        }
        return false;
    }

2.8 删除指定元素

  1. 从头节点开始遍历链表,找到要删除的节点
  2. 情况一:删除的节点为头节点,更新头节点为下一个节点,更新下一个节点的prev域置为空。

  3. 情况二:链表中只有一个元素,且正好要删除这个元素。
  4. 情况三:删除的节点为尾节点,更新尾节点为当前节点的上一个节点,上一个节点的next域置为空

  5. 情况四:删除中间节点,当前节点的上一个节点的next域指向当前节点的下一个节点,更新下一个节点的prev域指向当前节点的上一个节点

  6. 删除了节点就结束方法的执行

代码:

@Override
    public void remove(int key) {
         ListNode cur = head;
         while (cur != null) {
             if (cur.val == key) { // 找到要删除的元素了
                 if (cur == head) { // 删除头节点
                     head = head.next;
                     if (head != null) {
                         head.prev = null;
                     } else { // 链表中只有一个元素,且这个正好删除这个元素
                         last = null;
                     }
                 } else { // 删除中间节点
                     cur.prev.next = cur.next;
                     if (cur.next != null) {
                        cur.next.prev = cur.prev;
                     } else {
                         // 删除尾节点
                         last = cur.prev;
                     }
                 }
                 return;// 删除了节点就结束方法
             }
             cur = cur.next;
         }
    }

2.9 删除链表中所有指定元素

从头节点遍历链表,与删除指定元素的方式一样,删除节点后继续遍历链表,直到遍历完链表,删除所有指定的元素即可。

代码:

@Override
    public void removeAllKey(int key) {
        ListNode cur = head;
        while (cur != null) {
            if (cur.val == key) { // 找到要删除的元素了
                if (cur == head) { // 删除头节点
                    head = head.next;
                    if (head != null) {
                        head.prev = null;
                    } else { // 链表中只有一个元素,且这个正好删除这个元素
                        last = null;
                    }
                } else { // 删除中间节点
                    cur.prev.next = cur.next;
                    if (cur.next != null) {
                        cur.next.prev = cur.prev;
                    } else {
                        // 删除尾节点
                        last = cur.prev;
                    }
                }
            }
            cur = cur.next;
        }
    }

2.10 统计链表元素个数

代码:

@Override
    public int size() {
        int count = 0;
        ListNode cur = head;
        while (cur != null) {
            count++;
            cur = cur.next;
        }
        return count;
    }

2.11 清空链表

将头节点和尾节点置为空,没有引用指向直接被JVM回收

@Override
    public void clear() {
        head = null;
        last = null;
    }

2.12 打印链表

@Override
    public void display() {
        ListNode cur = head;
        while (cur != null) {
            System.out.print(cur.val + " ");
            cur = cur.next;
        }
        System.out.println();
    }

2.13 测试

public class Test {
    public static void main(String[] args) {
        MyLinkedList myLinkedList = new MyLinkedList();
        // 头插法
        myLinkedList.addFirst(1);
        myLinkedList.addFirst(2);
        myLinkedList.addFirst(3);
        // 打印链表
        myLinkedList.display();
        System.out.println("=========");
        // 尾插法
        myLinkedList.addLast(4);
        myLinkedList.addLast(5);
        myLinkedList.addLast(6);
        // 打印链表
        myLinkedList.display();
        System.out.println("=========");
        // 在4 位置插入7
        myLinkedList.addIndex(4,7);
        // 打印链表
        myLinkedList.display();
        System.out.println("=========");
        // 查找元素 7 8
        System.out.println(myLinkedList.contains(7));
        System.out.println(myLinkedList.contains(8));
        System.out.println("=========");
        // 删除3 6 4
        myLinkedList.remove(3);
        myLinkedList.display();
        System.out.println("=========");
        myLinkedList.remove(6);
        myLinkedList.display();
        System.out.println("=========");
        myLinkedList.remove(4);
        myLinkedList.display();
        System.out.println("=========");
        // 删除全部的2
        myLinkedList.addLast(2);
        myLinkedList.addLast(2);
        myLinkedList.addLast(2);
        myLinkedList.display();
        myLinkedList.removeAllKey(2);
        myLinkedList.display();
        System.out.println("=========");
        // 统计个数
        System.out.println(myLinkedList.size());
        System.out.println("=========");
        // 清空链表
        myLinkedList.clear();
        myLinkedList.display();
        System.out.println("=========");
        
        // 统计个数
        System.out.println(myLinkedList.size());
    }
}
// 运行结果
3 2 1 
=========
3 2 1 4 5 6 
=========
3 2 1 4 7 5 6 
=========
true
false
=========
2 1 4 7 5 6 
=========
2 1 4 7 5 
=========
2 1 7 5 
=========
2 1 7 5 2 2 2 
1 7 5 
=========
3
=========
=========
0

3.代码

MyLinkedList类:

public class MyLinkedList implements IList{
    static class ListNode {
        public int val; // 数值域 - 存放当前节点的值
        public ListNode next; // next域 指向下一个节点
        public ListNode prev; // prev域 指向上一个节点
        public ListNode(int val) {
            this.val = val;
        }
    }
    // 链表的属性 链表的头节点
    public ListNode head;
    // 链表的属性 链表的尾节点
    public ListNode last;
    /**
     * 头插法
     * @param data
     */
    @Override
    public void addFirst(int data) {
        ListNode node = new ListNode(data);
        if (head == null) {
            head = node;
            last = node;
        }else {
            node.next = head;
            head.prev = node;
            head = node;
        }
    }
    /***
     * 尾插法
     * @param data
     */
    @Override
    public void addLast(int data) {
        ListNode node = new ListNode(data);
        if (head == null) {
            head = node;
            last = node;
        } else {
            last.next = node;
            node.prev = last;
            last = node;
        }
    }
    @Override
    public void addIndex(int index, int data) {
        if (index < 0 || index > size()) {
            throw new IndexException("index不合法:" + index);
        }
        ListNode node = new ListNode(data);
        if (head == null) {
            head = node;
            last = node;
            return;
        }
        if (index == 0) {
            addFirst(data);
            return;
        }
        if (index == size()) {
            addLast(data);
            return;
        }
        ListNode cur = findIndex(index);
        node.next = cur;
        node.prev = cur.prev;
        cur.prev = node;
        node.prev.next = node;
    }
    private ListNode findIndex(int index) {
        ListNode cur = head;
        while (index != 0) {
            cur = cur.next;
            index--;
        }
        return cur;
    }
    @Override
    public boolean contains(int key) {
        ListNode cur = head;
        while (cur != null) {
            if (cur.val == key) {
                return true;
            }
            cur = cur.next;
        }
        return false;
    }
    @Override
    public void remove(int key) {
         ListNode cur = head;
         while (cur != null) {
             if (cur.val == key) { // 找到要删除的元素了
                 if (cur == head) { // 删除头节点
                     head = head.next;
                     if (head != null) {
                         head.prev = null;
                     } else { // 链表中只有一个元素,且这个正好删除这个元素
                         last = null;
                     }
                 } else { // 删除中间节点
                     cur.prev.next = cur.next;
                     if (cur.next != null) {
                        cur.next.prev = cur.prev;
                     } else {
                         // 删除尾节点
                         last = cur.prev;
                     }
                 }
                 return;
             }
             cur = cur.next;
         }
    }
    @Override
    public void removeAllKey(int key) {
        ListNode cur = head;
        while (cur != null) {
            if (cur.val == key) { // 找到要删除的元素了
                if (cur == head) { // 删除头节点
                    head = head.next;
                    if (head != null) {
                        head.prev = null;
                    } else { // 链表中只有一个元素,且这个正好删除这个元素
                        last = null;
                    }
                } else { // 删除中间节点
                    cur.prev.next = cur.next;
                    if (cur.next != null) {
                        cur.next.prev = cur.prev;
                    } else {
                        // 删除尾节点
                        last = cur.prev;
                    }
                }
            }
            cur = cur.next;
        }
    }
    @Override
    public int size() {
        int count = 0;
        ListNode cur = head;
        while (cur != null) {
            count++;
            cur = cur.next;
        }
        return count;
    }
    @Override
    public void clear() {
        head = null;
        last = null;
    }
    @Override
    public void display() {
        ListNode cur = head;
        while (cur != null) {
            System.out.print(cur.val + " ");
            cur = cur.next;
        }
        System.out.println();
    }
}

接口:

public interface IList {
    //头插法
    public void addFirst(int data);
    //尾插法
    public void addLast(int data);
    //任意位置插入,第一个数据节点为0号下标
    public void addIndex(int index,int data);
    //查找是否包含关键字key是否在单链表当中
    public boolean contains(int key);
    //删除第一次出现关键字为key的节点
    public void remove(int key);
    //删除所有值为key的节点
    public void removeAllKey(int key);
    //得到单链表的长度
    public int size();
    // 清空链表
    public void clear();
    // 打印链表
    public void display();
}

异常类:

public class IndexException extends RuntimeException{
    public IndexException() {
    }
    public IndexException(String msg) {
        super(msg);
    }
}

4. ArrayList和LinkedList的区别

不同点 ArrayList LinkedList
存储空间上 物理上一定连续 逻辑上连续,但物理上不一定连续
随机访问 支持O(1) 不支持O(n)
头插 需要搬移元素,效率低O(n) 只需要修改引用的指向,时间复杂度为O(1)
插入 空间不够时需要扩容 没有容量的概念
应用场景 元素高效存储 + 频繁访问 任意位置插入和删除频繁

相关文章
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
84 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
2月前
|
存储 Go 容器
深入探究Go语言中的数据结构
深入探究Go语言中的数据结构
45 3
|
4月前
|
搜索推荐 算法 Java
手写快排:教你用Java写出高效排序算法!
快速排序(QuickSort)是经典的排序算法之一,基于分治思想,平均时间复杂度为O(n log n),广泛应用于各种场合。在这篇文章中,我们将手写一个Java版本的快速排序,从基础实现到优化策略,并逐步解析代码背后的逻辑。
161 1
|
2月前
|
存储 Java
数据结构第二篇【关于java线性表(顺序表)的基本操作】
数据结构第二篇【关于java线性表(顺序表)的基本操作】
33 6
|
2月前
|
算法 搜索推荐 Java
java 后端 使用 Graphics2D 制作海报,画echarts图,带工具类,各种细节:如头像切割成圆形,文字换行算法(完美实验success),解决画上文字、图片后不清晰问题
这篇文章介绍了如何使用Java后端技术,结合Graphics2D和Echarts等工具,生成包含个性化信息和图表的海报,并提供了详细的代码实现和GitHub项目链接。
114 0
java 后端 使用 Graphics2D 制作海报,画echarts图,带工具类,各种细节:如头像切割成圆形,文字换行算法(完美实验success),解决画上文字、图片后不清晰问题
|
2月前
|
算法 Java 数据中心
探讨面试常见问题雪花算法、时钟回拨问题,java中优雅的实现方式
【10月更文挑战第2天】在大数据量系统中,分布式ID生成是一个关键问题。为了保证在分布式环境下生成的ID唯一、有序且高效,业界提出了多种解决方案,其中雪花算法(Snowflake Algorithm)是一种广泛应用的分布式ID生成算法。本文将详细介绍雪花算法的原理、实现及其处理时钟回拨问题的方法,并提供Java代码示例。
79 2
|
2月前
|
算法 Java Linux
java制作海报一:java使用Graphics2D 在图片上写字,文字换行算法详解
这篇文章介绍了如何在Java中使用Graphics2D在图片上绘制文字,并实现自动换行的功能。
120 0
|
2月前
|
算法 Java 测试技术
数据结构 —— Java自定义代码实现顺序表,包含测试用例以及ArrayList的使用以及相关算法题
文章详细介绍了如何用Java自定义实现一个顺序表类,包括插入、删除、获取数据元素、求数据个数等功能,并对顺序表进行了测试,最后还提及了Java中自带的顺序表实现类ArrayList。
26 0
|
4月前
|
设计模式 缓存 算法
揭秘策略模式:如何用Java设计模式轻松切换算法?
【8月更文挑战第30天】设计模式是解决软件开发中特定问题的可重用方案。其中,策略模式是一种常用的行为型模式,允许在运行时选择算法行为。它通过定义一系列可互换的算法来封装具体的实现,使算法的变化与客户端分离。例如,在电商系统中,可以通过定义 `DiscountStrategy` 接口和多种折扣策略类(如 `FidelityDiscount`、`BulkDiscount` 和 `NoDiscount`),在运行时动态切换不同的折扣逻辑。这样,`ShoppingCart` 类无需关心具体折扣计算细节,只需设置不同的策略即可实现灵活的价格计算,符合开闭原则并提高代码的可维护性和扩展性。
66 2
|
4月前
|
安全 算法 Java
java系列之~~网络通信安全 非对称加密算法的介绍说明
这篇文章介绍了非对称加密算法,包括其定义、加密解密过程、数字签名功能,以及与对称加密算法的比较,并解释了非对称加密在网络安全中的应用,特别是在公钥基础设施和信任网络中的重要性。