【办公自动化】使用Python一键往Word文档的表格中填写数据

简介: 【办公自动化】使用Python一键往Word文档的表格中填写数据

一、Python处理Word


  • Python处理Word的好处


使用Python处理Word文档具有许多优势,以下是一些主要的好处:


  1. 自动化和批量处理: Python可以帮助你自动化处理大量的Word文档,例如批量替换文本、生成报告、提取数据等。这样可以节省大量的时间和劳动力。


  1. 数据提取和转换: 如果你需要从大量的Word文档中提取特定数据,Python可以轻松实现这一点。你可以编写脚本来搜索并提取你需要的信息,然后将其转换为其他格式,如CSV、Excel或数据库。


  1. 定制化和自由度: 使用Python处理Word文档意味着你可以根据自己的需求定制处理过程。你可以创建定制的模板、样式和布局,以及根据项目需求进行灵活的调整。


  1. 与其他工具和技术的集成: Python可以与许多其他库和技术进行集成,例如数据库、Web服务、数据分析工具等。这使得你可以将Word文档的处理与其他工作流程结合起来,实现更复杂的任务。


  1. 文档生成和报告: 如果你需要定期生成报告或文档,Python可以通过自动生成文本、图表和表格等来实现。这对于数据分析、项目管理和业务报告等非常有用。


  1. 版本控制和代码重用: 使用Python代码处理Word文档可以实现代码重用和版本控制。你可以将处理文档的代码存储在版本控制系统中,以便团队成员协作、维护和共享代码。


  1. 跨平台性: 大多数Python库可以在多个操作系统上运行,因此你可以在Windows、Linux和macOS等不同平台上处理Word文档。


  • Python处理Word的第三方库


在Python中,有几个第三方库可以用于处理Word文档。以下是一些常用的第三方库:


  1. python-docx: 这是一个用于创建和修改Microsoft Word文档(.docx格式)的流行库。它允许你读取、编辑和创建Word文档,包括段落、表格、图像等。


  1. pywin32(仅限Windows): 这个库允许你在Windows上与Microsoft Office应用程序进行交互,包括Word。它可以用于自动化操作,例如创建、打开、编辑和保存文档。


  1. docx2txt: 这个库可以用来将.docx文件转换为纯文本(.txt格式)。它适用于从Word文档中提取文本内容。


  1. python-docx-template: 这个库扩展了python-docx库,使你能够在模板中插入变量和循环,并以更动态的方式生成Word文档。


  1. py-docx: 这是另一个用于处理.docx文件的库。它提供了类似python-docx的功能,但使用不同的接口。


二、一键往Word文档的表格中填写数据


 技术工具:


Python版本:3.9


代码编辑器:jupyter notebook


 在工作中,我们经常遇到将Excel表中的部分信息填写到Word文档的对应表格中,以生成报告,方便打印。今天我们就来试试如何往固定的Word模板中填写数据。此例要求将Excel档的“收货数据”填写到Word档的“收货记录”中去,并加总收货数量。模板是下面这样的。


要求结果是这样的:


首先,需要从Excel表格中提取数据。

#从Excel表中提取数据
from openpyxl import load_workbook
wb = load_workbook("收货数据.xlsx")
ws = wb.active
data=[]
for row in range(2,ws.max_row+1):
    seq = ws["A"+str(row)].value
    supplier = ws["B"+str(row)].value
    material_pn = ws["C"+str(row)].value
    material_model = ws["D"+str(row)].value
    desp = ws["E"+str(row)].value
    qty = ws["F"+str(row)].value
    date = ws["G"+str(row)].value.date()
    info = [seq, supplier, material_pn, material_model, desp, qty, date]
    data.append(info)
# 检查一下数据
data[0]


由于需要将数量列的数据加总,所以先定义一个加总函数,以便后面调用。

#定义数量加总函数
def Sum_list(list):
    s = 0
    for i in list: #累加列表中的所有数
        s+=i
    return s
# 加总数量列的所有数字
qty_list=[]
for i in data:
    qty_list.append(i[5]) #数量在内层列表的第6个位置,索引是5
sum_qty= Sum_list(qty_list) #调用加总函数加总
sum_qty


定义单元格合并函数

#定义合并单元格的函数    
def Merge_cells(table,target_list,start_row,col):
    '''
    table: 是需要操作的表格
    target_list: 是目标列表,即含有重复数据的列表
    start_row: 是开始行,即表格中开始比对数据的行(需要将标题除开)
    col: 是需要处理数据的列
    '''
    start = 0 #开始行计数
    end = 0 #结束行计数
    reference = target_list[0] #设定基准,以列表中的第一个字符串开始
    for i in range(len(target_list)): #遍历列表
        if target_list[i] != reference: #开始比对,如果内容不同执行如下
            reference = target_list[i] #基准变成列表中下一个字符串
            end = i - 1 
            table.cell(start+start_row,col).merge(table.cell(end+start_row,col))
            start = end + 1
        if i == len(target_list) - 1: #遍历到最后一行,按如下操作
            end = i
            table.cell(start+start_row,col).merge(table.cell(end+start_row,col))


然后往word的表格中写入数据,并合并单元格。

#数据提取即处理完毕后,就可以往Word的表格中写入数据了
from docx import Document
doc = Document("收货记录模板.docx")
#读取word文档中的第一个表格的第二和第三列除标题和尾部总数行的数据
table = doc.tables[0] #已确定是第一个表格,其索引是0
supplier = [] #存储供应商名称
pn = [] #存储物料编码
for i in data:
    supplier.append(i[1])
    pn.append(i[2])
#按需增加行,以便填写数据
for i in range(len(supplier)): #模板中已经有一行了,所以总共只需增加len(supplier)行
    table.add_row() 
#增加好行后先做合并单元格操作
Merge_cells(table,supplier,1,1) #开始合并行为2,索引为1;供应商名称是在2列,索引为1
Merge_cells(table,pn,1,2) #开始合并行为2,索引为1;物料编码是在3列,索引为2
#写入数据到表格
for row in range(1,len(supplier)+1):
    for col in range(7):        
        table.cell(row,col).text = str(data[row-1][col])
max_row = len(table.rows) #获取最大一行
qty_row = max_row-1 #确定需要写入加总数据的一行
table.cell(qty_row,5).merge(table.cell(qty_row,5)) #合并右下角用于填写数量的两个单元格
table.cell(qty_row,4).text = '总数:'
table.cell(qty_row,5).text = str(sum_qty)
doc.save("收货记录.docx")


由于合并供应商名称和物料编码两列中的相同内容的单元格,所有需要把这两列的信息从总数据`data`中单独提取出来。新建了`supplier`和`pn`两个空列表,然后遍历`data`,将数据取出并存入空列表。随后,我们根据实际需要,新增一些空白行,以便后面写入数据。新增行的数量以`supplier`列表中元素的个数为依据。这个表格已经存在一个空白行,算上外行要填“总数”,只需增加`supplier`列表中元素的个数对应那么多行就够了。当然这里也可以以列表`pn`中元素个数为依据,两者是相等的。增加好行后,先调用函数`Merge_cells`做合并单元格操作(如果先写入数据,再合并,会导致单元格内容重复)。合并完后,就可以写入数据到表格了,此处遍历需要写入数据的行和列,然后从`data`中提取数据。数据行写完后,还需要写入最后一行的“总数”字样和总的物料数量。最后保存数据,得到如下结果:


三、往期推荐


Python提取pdf中的表格数据(附实战案例)

使用Python自动发送邮件

Python操作ppt和pdf基础

Python操作word基础

Python操作excel基础

使用Python一键提取PDF中的表格到Excel

目录
相关文章
|
11天前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
22天前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
41 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
10天前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
25 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
|
18天前
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
40 2
|
19天前
|
JSON 安全 数据安全/隐私保护
深度剖析:Python如何运用OAuth与JWT,为数据加上双保险🔐
【10月更文挑战第10天】本文介绍了OAuth 2.0和JSON Web Tokens (JWT) 两种现代Web应用中最流行的认证机制。通过使用Flask-OAuthlib和PyJWT库,详细展示了如何在Python环境中实现这两种认证方式,从而提升系统的安全性和开发效率。OAuth 2.0适用于授权过程,JWT则简化了认证流程,确保每次请求的安全性。结合两者,可以构建出既安全又高效的认证体系。
35 1
|
1月前
|
机器学习/深度学习 人工智能 运维
构建高效运维体系:从自动化到智能化的演进
本文探讨了如何通过自动化和智能化手段,提升IT运维效率与质量。首先介绍了自动化在简化操作、减少错误中的作用;然后阐述了智能化技术如AI在预测故障、优化资源中的应用;最后讨论了如何构建一个既自动化又智能的运维体系,以实现高效、稳定和安全的IT环境。
54 4
|
23天前
|
运维 Linux Apache
,自动化运维成为现代IT基础设施的关键部分。Puppet是一款强大的自动化运维工具
【10月更文挑战第7天】随着云计算和容器化技术的发展,自动化运维成为现代IT基础设施的关键部分。Puppet是一款强大的自动化运维工具,通过定义资源状态和关系,确保系统始终处于期望配置状态。本文介绍Puppet的基本概念、安装配置及使用示例,帮助读者快速掌握Puppet,实现高效自动化运维。
45 4
|
23天前
|
运维 jenkins 持续交付
自动化部署的魅力:如何用Jenkins和Docker简化运维工作
【10月更文挑战第7天】在现代软件开发周期中,快速且高效的部署是至关重要的。本文将引导你理解如何使用Jenkins和Docker实现自动化部署,从而简化运维流程。我们将从基础概念开始,逐步深入到实战操作,让你轻松掌握这一强大的工具组合。通过这篇文章,你将学会如何利用这些工具来提升你的工作效率,并减少人为错误的可能性。
|
28天前
|
运维 Prometheus 监控
运维中的自动化实践每月一次的系统维护曾经是许多企业的噩梦。不仅因为停机时间长,更因为手动操作容易出错。然而,随着自动化工具的引入,这一切正在悄然改变。本文将探讨自动化在IT运维中的重要性及其具体应用。
在当今信息技术飞速发展的时代,企业对系统的稳定性和效率要求越来越高。传统的手动运维方式已经无法满足现代企业的需求。自动化技术的引入不仅提高了运维效率,还显著降低了出错风险。本文通过几个实际案例,展示了自动化在IT运维中的具体应用,包括自动化部署、监控告警和故障排除等方面,旨在为读者提供一些实用的参考。
|
28天前
|
机器学习/深度学习 数据采集 运维
智能化运维:机器学习在故障预测和自动化响应中的应用
【10月更文挑战第1天】智能化运维:机器学习在故障预测和自动化响应中的应用
64 3