【SPSS】单样本K-S检验和两独立样本K-S检验详细操作教程(附案例实战)

简介: 【SPSS】单样本K-S检验和两独立样本K-S检验详细操作教程(附案例实战)

SPSS非参数检验概述



参数检验 VS 非参数检验


  • 参数检验:在总体分布形式已知的情况下,对总体分布的参数如均值、方差等进行推断的方法
  • 非参数检验:在总体分布未知的情况下,利用样本数据对总体分布形态等进行推断的一类方法


注意:


  • 由于非参数检验方法不涉及有关总体分布的参数,因而得名“非参数”检验
  • 如果样本不能很好的代表总体,任何检验方法都是无效的


SPSS中的非参数检验方法


  • 单样本的非参数检验
  • 两独立样本的非参数检验
  • 两配对样本的非参数检验


单样本K-S检验



单样本K-S检验介绍


  • K-S检验是以俄罗斯数学家柯尔莫哥洛夫和斯米诺夫(Kolmogorov-Smirnov)的名字命名的一种 非参数检验方法
  • 基本思想:利用样本数据推断样本来自的总体是否服从某一理论分布
  • SPSS中包含的适用于单样本K-S检验的理论分布有正态分布、均匀分布、泊松分布、指数分布
  • 原假设H0是:样本来自的总体与指定的理论分布无显著差异  


【案例】 收集到21名周岁儿童身高的样本数据,分析周岁儿童身高的总体是否服从正态分布。


①选择菜单【分析】----> 【非参数检验】----> 【旧对话框】----> 【单样本K-S】


②选择待检验变量,并指定理论分布


③检验结果


       结论:如果显著性水平α为0.05,由于概率P值小于显著性水平,因此拒绝原假设,认为周岁儿童身高的总体分布不服从正态分布。


两独立样本的非参数检验



两独立样本的非参数检验


  • 在对总体分布不甚了解的情况下,通过对两个独立样本的分析推断样本来自的两总体的分布是否存在显著差异的方法
  • 独立样本是指在从一个总体中随机抽样对在另一个总体中随机抽样没有影响的情况下所获得的样本


主要方法


  • 曼-惠特尼U检验(Mann-Whitney U)
  • K-S检验
  • W-W游程检验
  • 极端反应检验


注意:


       不同分析方法对同一批数据的分析结论有可能不相同。这 一方面说明分析过程中对数据进行反复的探索性分析是极为必 要的;另一方面也说明了不同方法本身侧重点的差异性。


两独立样本的K-S检验



两独立样本的K-S检验


  • 原假设H0 :两独立样本来自的两总体的分布无显著差异
  • 以变量值的秩作为分析对象
  • 计算步骤:
  • 1 首先,将两样本混合并按升序排序
  • 2 然后,分别计算两样本秩的累计频数和累计频率
  • 3 最后,计算两组累计频率差的绝对值,得到累计频率绝对差序列并得到D统计量
  • 决策:如果概率P值小于等于给定的显著性水平α,则拒绝原假设, 认为样本来自的两总体的分布存在显著差异;反之则接受原假设,认为样本来自的两总体的分布不存在显著差异


【案例】 某工厂用甲、乙两种不同的工艺生产同一种产品。如果希望检 验两种工艺下产品的使用寿命的分布是否存在显著差异,可从两种工艺生产出的产品中随机抽样,得到各自的使用寿命数据。


操作步骤:


①选择菜单【分析】----> 【非参数检验】----> 【旧对话框】----> 【2个独立样本】


②选择检验变量、分组变量、检验类型


③点击“确定”,分析结果如下:


        结论:概率P值为0.037,如果显著性水平α为0.05,由于概率P值小于显著性水平α,因此应拒绝原假设,认为甲、乙两种工艺下产品使用寿命的分布存在显著差异。

目录
相关文章
|
定位技术
ArcGIS地形起伏度+地形粗糙度+地表切割深度+高程变异系数提取
ArcGIS地形起伏度+地形粗糙度+地表切割深度+高程变异系数提取
14933 0
|
7月前
|
算法 数据可视化 调度
基于NSGAII的的柔性作业调度优化算法MATLAB仿真,仿真输出甘特图
本程序基于NSGA-II算法实现柔性作业调度优化,适用于多目标优化场景(如最小化完工时间、延期、机器负载及能耗)。核心代码完成任务分配与甘特图绘制,支持MATLAB 2022A运行。算法通过初始化种群、遗传操作和选择策略迭代优化调度方案,最终输出包含完工时间、延期、机器负载和能耗等关键指标的可视化结果,为制造业生产计划提供科学依据。
|
C++
【SPSS】两独立样本T检验分析详细操作教程(附案例实战)
【SPSS】两独立样本T检验分析详细操作教程(附案例实战)
2209 0
|
10月前
|
搜索推荐 数据可视化 视频直播
精准与个性化:数字营销的新篇章
在数字化时代,数字营销已成为企业提升品牌、拓展市场和促进销售的关键手段。2021年,中国数字营销市场规模达1.4万亿元,增长17.9%,显示其巨大潜力。市场多元化,包括搜索引擎、信息流、视频和社交广告等渠道,各具特色。同时,面临消费者注意力分散、隐私保护等挑战,企业需通过精准营销、内容创意和多渠道整合来突出产品优势,实现销售突破。板栗看板作为专业工具,提供数据整合、分析和可视化服务,助力企业优化营销策略。
|
12月前
|
机器学习/深度学习 算法
贝叶斯线性回归:概率与预测建模的融合
本文探讨了贝叶斯方法在线性回归中的应用,从不确定性角度出发,介绍了如何通过概率来表达变量间关系的不确定性。文章首先回顾了古希腊天文学家使用本轮系统模拟行星运动的历史,并将其与傅里叶级数分解方法类比,强调了近似的重要性。接着,通过高斯分布和贝叶斯推断,详细讲解了线性回归中的不确定性处理方法。文章使用Howell1数据集,展示了如何构建和拟合高斯模型,并通过先验预测模拟验证模型合理性。最后,介绍了多项式回归和样条方法,展示了如何逐步增加模型复杂性以捕捉更细微的数据模式。贝叶斯方法不仅提供了点估计,还提供了完整的后验分布,使得模型更具解释性和鲁棒性。
314 1
贝叶斯线性回归:概率与预测建模的融合
|
12月前
|
机器学习/深度学习 算法
神经网络的结构与功能
神经网络是一种广泛应用于机器学习和深度学习的模型,旨在模拟人类大脑的信息处理方式。它们由多层不同类型的节点或“神经元”组成,每层都有特定的功能和责任。
734 0
|
机器学习/深度学习 决策智能
初探强化学习
初探强化学习
304 0
|
算法 Python
群智能算法:灰狼优化算法(GWO)的详细解读
在优化问题中,寻找最优解是核心目标。灰狼优化算法(GWO)受到自然界灰狼狩猎行为和社会等级结构的启发,通过模拟Alpha(头狼)、Beta(助手狼)、Delta(支配狼)和Omega(普通狼)的角色,高效搜索最优解。本文详细解析GWO的原理与步骤,并提供Python代码实现,帮助读者理解并应用这一算法。
|
机器学习/深度学习
【机器学习】准确率、精确率、召回率、误报率、漏报率概念及公式
机器学习评估指标中的准确率、精确率、召回率、误报率和漏报率等概念,并给出了这些指标的计算公式。
2706 0
|
人工智能 Linux 开发工具
魔搭社区GGUF模型怎么玩!看这篇就够了
近期,Qwen2系列模型家族发布了系列GGUF格式模型。通过llama.cpp/Ollama等生态的发展,很多大语言模型都支持GGUF格式,极大地简化了大语言模型的应用流程,让即便是模型领域的初学者,只有一台CPU笔记本,也能轻松上手顶尖的AI技术。