R语言配对检验分析案例

简介: R语言配对检验分析案例

什么是检验对?

检验对的形式 (x1,x2) 出现在两种情况中:

  1. 对同一实体执行两次测量。例如,一项评估新型胰岛素疗效的临床研究将为每位患者测量两次血糖水平:之前(X1)服药后(X2)
  2. 对不同的实体进行测量。但是,实体根据其特征进行匹配。例如,为了测试药物的功效,您可能希望根据体重,年龄或其他特征配对研究参与者,以控制这些混杂因素。

在第一种情况下,配对是数据生成过程的自然结果。在第二种情况下,配对由研究设计强制执行。

为什么依赖测量有用?

使用配对检验,可以控制影响测量结果的混杂因素。因此,配对研究设计通常比涉及独立组的设计更强大。

睡眠数据集

让我们考虑睡眠数据集,举例说明:

data(sleep)
print(sleep)
##    extra group ID
## 1    0.7     1  1
## 2   -1.6     1  2
## 3   -0.2     1  3
## 4   -1.2     1  4
## 5   -0.1     1  5
## 6    3.4     1  6
## 7    3.7     1  7
## 8    0.8     1  8
## 9    0.0     1  9
## 10   2.0     1 10
## 11   1.9     2  1
## 12   0.8     2  2
## 13   1.1     2  3
## 14   0.1     2  4
## 15  -0.1     2  5
## 16   4.4     2  6
## 17   5.5     2  7
## 18   1.6     2  8
## 19   4.6     2  9
## 20   3.4     2 10

_extra_表示与基线测量相比睡眠中的增加/减少(正/负值),_组_表示药物,_ID_表示患者ID。为了更清楚,我将_组_重命名为_药物_:

调查睡眠数据集

重要的是要注意每个人都是不同的。因此,相同药物的功效可能因人而异。让我们看看这个数据集中是否也是这种情况:

实际上,个体研究对象的额外睡眠时间分布似乎是双峰的。大约一半的受试者表现出两种药物的睡眠持续时间大幅增加,而另一半受试者几乎没有益处甚至患有药物。使用配对检验,可以校正这些患者间差异,而对于假设测量是独立的测试,这是不可能的。

比较不成对和配对检验

现在让我们比较不成对测试和配对检验对睡眠数据集的执行情况。

Wilcoxon秩和检验

如果我们在测量中使用未配对的Wilcoxon秩和检验(Mann-Whitney U检验),则该检验将产生以下药物顺序以确定显着性:

##  \[1\] 1 1 1 1 2 1 2 1 1 2 2 2 2 1 1 2 1 2 2 2
## Levels: 1 2

我们可以看到,虽然代表性不足,但药物1在最高级别中出现了好几次。这是因为,对于两种药物反应良好的患者,药物1也运作良好。由于依赖药物的额外睡眠时间没有明显的分离,因此测试在5%的水平上不会显着:

## \[1\] 0.06932758

_威尔科克森_符号秩检验

考虑配对的检验值更有意义,因为检验结果不受个体受试者的药物敏感性的影响。我们可以看到,当我们计算患者内额外睡眠差异时,用于未配对Wilcoxon检验的度量:

##  \[1\] -1.2 -2.4 -1.3 -1.3  0.0 -1.0 -1.8 -0.8 -4.6 -1.4

非阳性差异清楚地表明药物1在所有研究受试者中都不如药物2。由于Wilcoxon检验基于这些差异,因此发现两种药物在显着性水平为5%时存在显着差异:

# 配对检验
w.unpaired <- wilcox.test(x, y, paired = TRUE)
print(w.unpaired$p.value)
``````
## \[1\] 0.009090698

结论

这个例子说明了为什么分组研究设计优于检验独立的研究设计。当然,仅在使用考虑配对检验的测试来评估数据的情况下才是这种情况。否则,实际上重要的结果可能被错误地视为无关紧要。

非常感谢您阅读本文,有任何问题请在下面留言!

相关文章
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
60 3
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
7月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
7月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
4月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
4月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
4月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
91 3
|
7月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)