【SPSS】两独立样本T检验分析详细操作教程(附案例实战)

简介: 【SPSS】两独立样本T检验分析详细操作教程(附案例实战)

推断统计与参数检验



推断统计


  • 推断统计方法是根据样本数据推断总体特征的方法
  • 推断统计包括参数估计 (点估计和区间估计)和假设检验两大类


参数检验 VS 非参数检验


  • 参数检验(参数假设检验)

总体分布已知 (如总体为正态分布)的情况下,根据样本数据对总体分布的统计参数(如均值、方差等)进行推断

  • 非参数检验(非参数假设检验)

总体分布未知的情况下,根据样本数据对总体的分布形式或数字特征进行推断


假设检验



假设检验的基本思想


1 首先,对总体参数值提出假设

2 然后,利用样本告知的信息去验证先前提出的假设是否成立


  • 如果样本数据不能够充分证明和支持假设,则应拒绝假设
  • 如果样本数据能够充分证明和支持假设,则不能推翻假设


小概率原理:

  • 发生概率很小的随机事件在某一次特定的实验中是几乎不可能发生的
  • 小概率原理是假设检验所依据的原理


假设检验的基本步骤


1.提出原假设(记为H0 )和备择假设(记为H1 ) 通常,将希望推翻的假设放在原假设上

2.选择检验统计量:检验统计量服从或近似服从某种已知的理论分布

3.计算概率P值:在认为原假设成立的条件下,根据样本数据和检验统计量计算 概率P值,该概率值间接地给出了样本值(或更极端值)在原假设成 立条件下发生的概率,即:P(拒绝H0|H0为真)

4.给定显著性水平α,并作出统计决策:显著性水平α是在原假设H0正确的前提下却拒绝原假设的概率,即“弃真”概率,一般设定为 0.05或0.01 若概率P值小于等于α,拒绝原假设;否则,不能拒绝原假设  


独立样本t检验



两独立样本t检验介绍


目的:利用来自两个总体的独立样本,推断两个总体的均值是否存在显著差异


前提:


  • 样本来自的总体应服从或近似服从正态分布
  • 两样本相互独立,即从一总体中抽取一个样本对从另一总体中抽取一个样本没有任何影响,两个样本的样本量可以不等


两独立样本t检验的基本步骤


1.提出原假设


对于双侧检验:


对于单侧检验,也有相应的原假设和备择假设,μ1,μ2分别为第一个和第二个总体的均值


2.选择检验统计量


       利用两组样本均值的差去估计两总体均值的差。当两总体分布为N(μ1 ,σ1 2)和N(μ2 ,σ2 2)时,两样本均值差的抽样分布仍为正态分布,该正态分布的均值为μ1 -μ2 ,方差为σ12 2。于是,两总体均值差检验的检验统计量为t统计量,数学定义为:


其中,在不同的情况下σ12 2有不同的计算方式


第一种情况:当两总体方差未知且相等,即σ1=σ2时,


其中:


此时,t统计量服从n1+n2 -2个自由度的t分布;


第二种情况:当两总体方差未知且不相等,即σ1≠σ2时,


此时,t统计量服从修正自由度的t分布(这种情况的自由度计算很复杂,无需记忆)


注意:

       两总体方差是否相等是决定t统计量计算的关键。SPSS 中通过Levene F方法推断两总体方差是否有显著差异(原假设是两总体方差无显著差异)。


3.计算检验统计量的观测值和概率P值


4.给定显著性水平α,并作出决策


两独立样本t检验的应用



注意:


       在进行两独立样本t检验时,SPSS要求将两个样本数据存放在一个SPSS变量中,同时,为区分哪个样本来自哪个总体,还应定义一个存放总体标识的标识变量。


【案例】 利用大学生职业生涯规划数据,研究男生与女生的专业和职业认知得分的总体平均值是否存在显著差异。


根据题意,可认为原假设是男女生认知得分的总体均值无显著差异,备择假设为有显著差异,即:

H0 : μ1 -μ2=0

H1 : μ1 -μ2≠0


操作步骤:


①选择菜单【分析】----> 【比较均值】----> 【独立样本T检验】


②选择检验变量和分组变量


③分析结果如下:


结论:


       从第一个表中可以看出,男生与女生的认知得分的样本平均值有一定差距,这种差距是由抽样误差造成的还是系统性的, 还需要进一步检验。


第二个表完成的是两独立样本t检验的结果,第一步,两总体方差是否相等的F检验,该检验的F统计量观测值对应的概率P值为 0.000,小于显著性水平α,可以认为两总体的方差有显著差异。第二步,两总体均值差的检验,由于已经认为两总体的方差有显著差异,因此应看第二行(不假定等方差)t检验的结果。其中,t统计量的观测值为-37.230,对应的双侧概率P值为0.000,小于显著性水平α,可以认为两总体的均值有显著差异,即男女生认知得分的总体均值存在显著差异。  

目录
相关文章
|
数据挖掘
【SPSS】回归分析详细操作教程(附案例实战)(下)
【SPSS】回归分析详细操作教程(附案例实战)
2263 0
|
IDE Java 程序员
学生邮箱白嫖/免费安装JetBrains全家桶(IDEA/pycharm等) —— 保姆级教程
本文提供了如何使用学生邮箱免费获取并安装JetBrains全家桶(包括IDEA、PyCharm等)的详细教程,涵盖了学生认证、软件下载、安装及常见问题的解决方法。
4758 0
学生邮箱白嫖/免费安装JetBrains全家桶(IDEA/pycharm等) —— 保姆级教程
|
9月前
|
数据采集 机器学习/深度学习 人工智能
SongGen:三秒克隆音色!开源AI一键生成专业级歌曲,创作人必备神器
SongGen是由上海AI Lab、北京航空航天大学和香港中文大学联合推出的单阶段自回归Transformer模型,能够通过文本生成高质量歌曲,支持混合模式和双轨模式,显著提升生成歌曲的自然度和人声清晰度。
983 3
SongGen:三秒克隆音色!开源AI一键生成专业级歌曲,创作人必备神器
|
11月前
|
人工智能 算法 芯片
天天都在说的“算力”到底是个啥?一文全讲透!
算力是数字经济发展的重要支撑,尤其在AI和大数据应用中起着关键作用。阿里云致力于构建全球领先的算力基础设施,助力各行业数字化转型。吴泳铭和马云均强调了算力在未来科技竞争中的核心地位。2023年底,我国算力总规模达230EFLOPS,位居全球第二。算力分为通用、智能和超算算力,广泛应用于人工智能训练与推理等场景。中国正加速建设智算中心,推动算力产业链发展,并注重绿色低碳和智能运维,以应对日益增长的计算需求。
17507 19
|
存储 人工智能 缓存
官宣开源|阿里云与清华大学共建AI大模型推理项目Mooncake
2024年6月,国内优质大模型应用月之暗面Kimi与清华大学MADSys实验室(Machine Learning, AI, Big Data Systems Lab)联合发布了以 KVCache 为中心的大模型推理架构 Mooncake。
|
C++
【SPSS】单样本T检验分析详细操作教程(附案例实战)
【SPSS】单样本T检验分析详细操作教程(附案例实战)
3410 0
|
数据采集 存储 自然语言处理
基于Qwen2.5的大规模ESG数据解析与趋势分析多Agent系统设计
2022年中国上市企业ESG报告数据集,涵盖制造、能源、金融、科技等行业,通过Qwen2.5大模型实现报告自动收集、解析、清洗及可视化生成,支持单/多Agent场景,大幅提升ESG数据分析效率与自动化水平。
834 0
ArcMAP对遥感影像进行波段提取的3种方法
ArcMAP对遥感影像进行波段提取的3种方法
4298 0
|
JavaScript
如何通过点击商品的信息(图片或者文字)跳转到更加详细的商品信息介绍(前后端分离之Vue实现)
该博客文章介绍了如何在Vue 2框架下实现前后端分离的商品信息展示和详情页跳转,包括排序筛选、详情展示、加入购物车和分享功能。
如何通过点击商品的信息(图片或者文字)跳转到更加详细的商品信息介绍(前后端分离之Vue实现)
|
数据采集 自然语言处理 数据可视化
基于Python的社交媒体评论数据挖掘,使用LDA主题分析、文本聚类算法、情感分析实现
本文介绍了基于Python的社交媒体评论数据挖掘方法,使用LDA主题分析、文本聚类算法和情感分析技术,对数据进行深入分析和可视化,以揭示文本数据中的潜在主题、模式和情感倾向。
1985 0