基于yolov2深度学习网络的喝水行为检测系统matlab仿真

简介: 基于yolov2深度学习网络的喝水行为检测系统matlab仿真

1.算法运行效果图预览
1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
喝水行为检测在日常生活、医疗健康等领域具有重要意义。传统的检测方法通常基于图像处理和计算机视觉技术,这些方法往往受到光照、背景等干扰因素的影响,难以实现准确检测。近年来,深度学习技术的发展为喝水行为检测提供了新的解决方案。

3.1、YOLOv2网络原理
YOLOv2是一种实时目标检测算法,其核心思想是将目标检测任务看作一个回归问题,通过单次前向传播即可完成检测。相比于其他目标检测算法,YOLOv2具有更高的检测速度和较好的准确性。以下是YOLOv2网络的主要原理:

网络结构:YOLOv2采用Darknet-19作为基础网络,该网络由19个卷积层和5个最大池化层组成,具有较快的运算速度和较低的计算复杂度。

批量归一化(Batch Normalization):YOLOv2在网络中加入批量归一化层,减少内部协变量的移动,使网络更加稳定,加速收敛。

其基本结构如下所示:

6.png
7.png

     YOLOv2引入了多尺度训练方法,通过在网络输入端随机调整图像大小,提高网络对不同尺度目标的检测能力。

3.2、基于YOLOv2的喝水行为检测
为了将YOLOv2应用于喝水行为检测,我们需要进行以下步骤:

数据集准备:收集包含喝水行为的图像数据集,并对图像进行标注,包括喝水的人、水杯等目标。

网络训练:使用准备好的数据集对YOLOv2网络进行训练。在训练过程中,网络学习识别喝水行为相关的特征和目标。通过优化损失函数,使网络对喝水行为的检测更加准确。

4.部分核心程序

clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')
%MATLAB/verilog/python/opencv/tensorflow/caffe/C/C++等算法仿真
%微信公众号:matlabworld

load yolov2.mat% 加载训练好的目标检测器
img_size= [224,224];
imgPath = 'test/';        % 图像库路径
imgDir  = dir([imgPath '*.jpg']); % 遍历所有jpg格式文件
cnt     = 0;
for i = 1:10          % 遍历结构体就可以一一处理图片了
    i
    if mod(i,2)==1
       figure
    end
    cnt     = cnt+1;
    subplot(1,2,cnt); 
    img = imread([imgPath imgDir(i).name]); %读取每张图片 
    I               = imresize(img,img_size(1:2));
    [bboxes,scores] = detect(detector,I,'Threshold',0.15);
    if ~isempty(bboxes) % 如果检测到目标
        [Vs,Is] = max(scores);

        I = insertObjectAnnotation(I,'rectangle',bboxes(Is,:),Vs,LineWidth=3);% 在图像上绘制检测结果
    end
    subplot(1,2,cnt); 
    imshow(I, []);  % 显示带有检测结果的图像

    pause(0.01);% 等待一小段时间,使图像显示更流畅
    if cnt==2
       cnt=0;
    end
end
相关文章
|
8天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
8天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
104 68
|
8天前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
42 18
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
259 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
154 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
127 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
8月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)