【模式识别】探秘分类奥秘:K-近邻算法解密与实战

简介: 【模式识别】探秘分类奥秘:K-近邻算法解密与实战



🌌1 初识模式识别

模式识别是一种通过对数据进行分析和学习,从中提取模式并做出决策的技术。这一领域涵盖了多种技术和方法,可用于处理各种类型的数据,包括图像、语音、文本等。以下是一些常见的模式识别技术:

  1. 图像识别
  • 计算机视觉:使用计算机和算法模拟人类视觉,使机器能够理解和解释图像内容。常见的应用包括人脸识别、物体检测、图像分类等。
  • 卷积神经网络(CNN):一种专门用于图像识别的深度学习模型,通过卷积层、池化层等结构提取图像中的特征。
  1. 语音识别
  • 自然语言处理(NLP):涉及对人类语言进行处理和理解的技术。包括文本分析、情感分析、命名实体识别等。
  • 语音识别:将语音信号转换为文本,使机器能够理解和处理语音命令。常见应用包括语音助手和语音搜索。
  1. 模式识别在生物医学领域的应用
  • 生物特征识别:包括指纹识别、虹膜识别、基因序列分析等,用于生物医学研究和安全身份验证。
  • 医学图像分析:利用模式识别技术分析医学影像,如MRI、CT扫描等,以辅助医生进行诊断。
  1. 时间序列分析
  • 时间序列模式识别:对时间序列数据进行建模和分析,用于预测趋势、检测异常等。在金融、气象、股票市场等领域有广泛应用。
  1. 数据挖掘和机器学习
  • 聚类算法:将数据集中的相似对象分组,常用于无监督学习,如K均值聚类。
  • 分类算法:建立模型来对数据进行分类,如决策树、支持向量机等。
  • 回归分析:用于建立输入和输出之间的关系,用于预测数值型结果。
  • 深度学习:通过多层神经网络学习数据的表示,适用于处理大规模和复杂的数据。
  1. 模式识别在安全领域的应用
  • 行为分析:监测和识别异常行为,如入侵检测系统。
  • 生物特征识别:用于身份验证和访问控制,如指纹、面部识别。

这些技术通常不是孤立存在的,而是相互交叉和融合的,以解决更复杂的问题。在实际应用中,根据具体的问题和数据特点选择合适的模式识别技术是至关重要的。

资源获取:关注文末公众号回复  模式识别实验


🌌2 K-近邻法

🌍2.1 研究目的

1.理解K-近邻法的基本原理和核心概念。

2.学习如何使用K-近邻算法进行模型训练和预测。

3.掌握K-近邻法在不同数据集上的应用和调优方法。


🌍2.2 研究环境

  1. C++编程语言及其相关库
  • 语言支持: VSCode具备强大的C++语言支持,提供代码高亮、自动完成等功能,使得编码更加高效。
  • Eigen库: 作为线性代数的重要工具,Eigen库被集成用于进行高效的线性代数运算,为数学计算提供了强大的支持。
  1. OpenCV库
  • 图像处理: OpenCV库作为计算机视觉领域的重要工具,为图像处理和可视化提供了广泛的功能。包括图像读取、处理、特征提取等一系列操作,为图像相关的应用提供了基础支持。
  • 可视化: OpenCV还支持直观的图像可视化,使开发者能够直观地观察图像处理的效果,有助于调试和优化。
  1. C++编译器配置
  • GCC配置: 在使用VSCode进行C++开发时,确保已配置好C++编译器,常用的是GNU Compiler Collection(GCC)。正确的配置保证了代码的正确编译和执行。
  1. 硬件环境
  • 计算资源: 为了处理图像数据,需要充足的计算资源,包括足够的内存和强大的CPU/GPU。这保障了对大规模图像数据进行高效处理和运算。
  • 内存管理: 在处理大规模图像数据时,合理的内存管理变得至关重要,以防止内存溢出和提高程序运行效率。

🌍2.3 研究内容

🌕2.3.1 算法原理介绍

K-近邻(简称KNN)算法是一种基于实例的监督学习算法,用于解决分类和回归问题。其算法原理可以简单概括如下:

KNN 算法原理:

  1. 基本思想:
  • 给定一个训练数据集,其中包含了带有标签的样本。
  • 对于新的输入数据点,通过比较它与训练集中的样本的相似度,确定其最近邻的K个样本。
  • 对这K个最近邻样本中的标签进行统计,将新数据点分类为出现最频繁的类别(对于分类问题)或计算其输出值的平均值(对于回归问题)。
  1. 距离度量:
  • KNN 算法通常使用欧氏距离来度量两个数据点之间的距离,但也可以使用其他距离度量方法,如曼哈顿距离、闵可夫斯基距离等。欧氏距离计算公式为:distance(A,B)=∑i=1n(Ai−Bi)2
  1. 确定 K 值:
  • K 是一个用户预先指定的超参数,代表选择最近邻的数量。通过尝试不同的 K 值,可以影响算法的性能。通常采用交叉验证等方法来选择合适的 K 值。
  1. 分类过程:
  • 对于分类问题,对新数据点进行分类的步骤如下:
  • 计算新数据点与训练集中所有样本的距离。
  • 根据距离排序,选取最近的K个邻居。
  • 统计K个邻居中各类别的数量。
  • 将新数据点分为数量最多的类别。
  1. 回归过程:
  • 对于回归问题,对新数据点进行回归的步骤如下:
  • 计算新数据点与训练集中所有样本的距离。
  • 根据距离排序,选取最近的K个邻居。
  • 取K个邻居的输出值的平均值作为新数据点的预测输出。
  1. 特点:
  • KNN 是一种懒惰学习算法,不进行显式的训练过程,只在预测时进行计算。
  • KNN 算法对异常值敏感,因此在使用之前通常需要进行数据标准化或归一化处理。
  • 适用于小到中型数据集,但在大型数据集上可能计算开销较大。

总体而言,KNN 算法的核心思想是通过找到数据点的最近邻来进行分类或回归,该算法直观易懂,但也有一些需要注意的问题,例如对数据的高维度敏感和计算复杂度。


🌕2.3.2 实验步骤

本次实验主要围绕K-近邻法展开,包括以下关键步骤:

  1. 数据集准备:选取适当的数据集,确保包含足够的样本和标签信息。
  2. 算法实现:使用Python编程语言,利用K-近邻算法的实现库或自行编写代码,建立K-近邻模型。
  3. 模型训练与预测:将数据集划分为训练集和测试集,通过模型训练学习样本特征,然后利用测试集验证模型性能。

C语言代码:

#include <iostream>
#include <math.h>
#include <fstream>
#define  NATTRS 5 //number of attributes
#define  MAXSZ  1700 //max size of training set
#define  MAXVALUE  10000.0 //the biggest attribute's value is below 10000(int)
#define  K  5   
using namespace std;
struct vector {
  double attributes[NATTRS];
  double classlabel;
};
struct item {
  double distance;
  double classlabel;
};
struct vector trSet[MAXSZ];//global variable,the training set
struct item knn[K];//global variable,the k-neareast-neighbour set
int curTSize = 0; //current size of the training set
int AddtoTSet(struct vector v)
{
  if(curTSize>=MAXSZ) {
    cout<<endl<<"The training set has "<<MAXSZ<<" examples!"<<endl<<endl; 
    return 0;
  }
  trSet[curTSize] = v;
  curTSize++;
  return 1;
}
double Distance(struct vector v1,struct vector v2)
{
  double d = 0.0;
  double tem = 0.0;
  for(int i = 0;i < NATTRS;i++)
    tem += (v1.attributes[i]-v2.attributes[i])*(v1.attributes[i]-v2.attributes[i]);
  d = sqrt(tem);
  return d;
}
int max(struct item knn[]) //return the no. of the item which has biggest distance(
                           //should be replaced) 
{
  int maxNo = 0;
  if(K > 1)
  for(int i = 1;i < K;i++)
    if(knn[i].distance>knn[maxNo].distance)
      maxNo = i;
    return maxNo;
}
double Classify(struct vector v)//decide which class label will be assigned to
                             //a given input vetor with the knn method
{
  double dd = 0;
  int maxn = 0;
  int freq[K];
  double mfreqC = 0;//the class label appears most frequently 
  int i;
  for(i = 0;i < K;i++)
    knn[i].distance = MAXVALUE;
  for(i = 0;i < curTSize;i++)
  {
    dd = Distance(trSet[i],v);
    maxn = max(knn);//for every new state of the training set should update maxn
    if(dd < knn[maxn].distance) {
        knn[maxn].distance = dd;
        knn[maxn].classlabel = trSet[i].classlabel;
            }
  }
  for(i = 0;i < K;i++)//freq[i] represents knn[i].classlabel appears how many times 
    freq[i] = 1;
  for(i = 0;i < K;i++)  
    for(int j = 0;j < K;j++)
      if((i!=j)&&(knn[i].classlabel == knn[j].classlabel))
        freq[i]+=1;
    for(i = 0;i < K;i++)  
    cout<<"freq:"<<freq[i]<<endl;
  int mfreq = 1;
  mfreqC = knn[0].classlabel;
  for(i = 0;i < K;i++)
    if(freq[i] > mfreq)  {
      mfreq = freq[i];//mfreq represents the most frepuences
      mfreqC = knn[i].classlabel; //mfreqNo is the item no. with the most frequent
                                   //classlabel
    }
  return mfreqC;
}
void main()
{   
  double classlabel;
  double c; 
  double n;
  struct vector trExmp; 
  int i;
  ifstream filein("data.txt");
  if(filein.fail()){cout<<"Can't open data.txt"<<endl; return;}
  while(!filein.eof()) 
  {
    filein>>c;
    trExmp.classlabel = c;
    cout<<"lable:"<<trExmp.classlabel<<"| ";
    for(int i = 0;i < NATTRS;i++) 
    {
    filein>>n;
    trExmp.attributes[i] = n;
    cout<<trExmp.attributes[i]<<" ";
    }
    cout<<endl;
   if(!AddtoTSet(trExmp))
    break;
  }
  filein.close();
  struct vector testv={{1,18,11,11,0.5513196},17};
  classlabel = Classify(testv);
  cout<<"The classlable of the testv is:  ";
  cout<<classlabel<<endl;
  for(i = 0;i < K;i++)
    cout<<knn[i].distance<<"\t"<<knn[i].classlabel<<endl;
  //cout<<max(knn);
}

程序分析:

这段程序实现了一个简单的K-最近邻(KNN)分类器。以下是对程序的详细分析:

  1. 结构体定义:
  • struct vector: 用于表示数据点的结构体,包含了属性(attributes)和类别标签(classlabel)。
  • struct item: 用于表示KNN中每个邻居的结构体,包含了距离(distance)和类别标签(classlabel)。
  1. 全局变量:
  • struct vector trSet[MAXSZ]: 存储训练集的数组。
  • struct item knn[K]: 存储K个最近邻居的数组。
  • int curTSize: 记录当前训练集的大小。
  1. AddtoTSet函数:
  • 将一个新的数据点加入训练集,如果训练集已满,则输出错误信息。
  1. Distance函数:
  • 计算两个数据点之间的欧氏距离。
  1. max函数:
  • 返回KNN数组中距离最大的邻居的索引。
  1. Classify函数:
  • 使用KNN方法对一个输入向量进行分类。
  • 对于每个训练集中的数据点,计算与输入向量的距离,更新K个最近邻居。
  • 统计K个最近邻居中各类别的频次,选择出现最频繁的类别作为输入向量的类别。
  1. main函数:
  • 从文件"data.txt"中读取训练集数据,将每个数据点的类别和属性存储在 trSet 中。
  • 使用一个测试向量 testv 进行分类,并输出分类结果和K个最近邻居的信息。

总体而言,该程序实现了一个简单的KNN分类器,通过计算输入向量与训练集中各数据点的距离,找到最近的K个邻居,然后通过多数投票原则确定输入向量的类别。这个程序是一个基础的机器学习示例,用于展示KNN算法的基本原理。


🌕2.3.3 实验结果


🌍2.4 研究体会

  1. K-近邻法的核心思想: 通过实践深刻理解K-近邻法是一种基于实例的学习方法,其核心思想是通过计算样本之间的距离,利用最近的K个样本的标签信息进行预测。这种直观的思想使得K-近邻法在处理非线性和复杂数据集时表现出色。
  2. K值的重要性及调参启示: 实验中发现K值的选择对模型性能具有关键影响。经过反复尝试不同K值,认识到过小或过大的K值可能导致模型过拟合或欠拟合,进而影响预测准确性。这深刻启示我在实际应用中需要谨慎选择K值,并结合具体问题进行调参。
  3. 距离度量对模型性能的影响: 实验中尝试了不同的距离度量方法,如欧式距离和曼哈顿距离,发现在不同数据集上它们的效果有所差异。这使我认识到在选择距离度量时需要考虑数据的特点,以及不同度量方法对模型的影响。在实际应用中,这为更准确选择合适的度量方法提供了指导。

📝总结

模式匹配领域就像一片未被勘探的信息大海,引领你勇敢踏入数据科学的神秘领域。这是一场独特的学习冒险,从基本概念到算法实现,逐步揭示更深层次的模式分析、匹配算法和智能模式识别的奥秘。

目录
相关文章
|
2月前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
31 1
|
1月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
36 0
|
3月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
116 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
2月前
|
存储 缓存 分布式计算
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
这篇文章是关于数据结构与算法的学习指南,涵盖了数据结构的分类、数据结构与算法的关系、实际编程中遇到的问题以及几个经典的算法面试题。
43 0
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
|
3月前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
71 2
|
2月前
|
移动开发 算法 前端开发
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
33 0
|
3月前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
70 4
|
3月前
|
机器学习/深度学习 算法 数据挖掘
决策树算法大揭秘:Python让你秒懂分支逻辑,精准分类不再难
【9月更文挑战第12天】决策树算法作为机器学习领域的一颗明珠,凭借其直观易懂和强大的解释能力,在分类与回归任务中表现出色。相比传统统计方法,决策树通过简单的分支逻辑实现了数据的精准分类。本文将借助Python和scikit-learn库,以鸢尾花数据集为例,展示如何使用决策树进行分类,并探讨其优势与局限。通过构建一系列条件判断,决策树不仅模拟了人类决策过程,还确保了结果的可追溯性和可解释性。无论您是新手还是专家,都能轻松上手,享受机器学习的乐趣。
56 9
|
4月前
|
算法 安全 数据安全/隐私保护
Android经典实战之常见的移动端加密算法和用kotlin进行AES-256加密和解密
本文介绍了移动端开发中常用的数据加密算法,包括对称加密(如 AES 和 DES)、非对称加密(如 RSA)、散列算法(如 SHA-256 和 MD5)及消息认证码(如 HMAC)。重点讲解了如何使用 Kotlin 实现 AES-256 的加密和解密,并提供了详细的代码示例。通过生成密钥、加密和解密数据等步骤,展示了如何在 Kotlin 项目中实现数据的安全加密。
177 1
|
4月前
|
机器学习/深度学习 存储 算法
强化学习实战:基于 PyTorch 的环境搭建与算法实现
【8月更文第29天】强化学习是机器学习的一个重要分支,它让智能体通过与环境交互来学习策略,以最大化长期奖励。本文将介绍如何使用PyTorch实现两种经典的强化学习算法——Deep Q-Network (DQN) 和 Actor-Critic Algorithm with Asynchronous Advantage (A3C)。我们将从环境搭建开始,逐步实现算法的核心部分,并给出完整的代码示例。
358 1