m基于Q-Learning强化学习的异构网络小区范围扩展(CRE)技术matlab仿真

简介: m基于Q-Learning强化学习的异构网络小区范围扩展(CRE)技术matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg

2.算法涉及理论知识概要
基于Q-Learning强化学习的异构网络小区范围扩展(Cell Range Extension, CRE)技术是一种旨在优化异构无线网络性能的方法。异构网络是由不同类型的基站(如宏基站、微基站、皮基站等)组成的网络,这些基站具有不同的发射功率、覆盖范围和容量。小区范围扩展技术通过调整基站的发射功率或偏置参数,使得用户能够更均匀地分布在网络中,从而提高网络的整体性能和用户体验。

2.1 Q-Learning概要
在异构网络中,由于不同类型基站的差异,用户往往更倾向于连接到发射功率更大的宏基站,导致微基站和皮基站的负载较轻,宏基站的负载过重。这种现象被称为“蜂窝选择偏见”或“负载不平衡”。为了解决这个问题,可以通过小区范围扩展技术来调整基站的覆盖范围,使得用户能够更均匀地分布在不同类型的基站之间。

   Q-Learning是一种基于值迭代的强化学习算法,它通过学习一个Q值函数来评估在不同状态下采取不同动作的长期回报。在异构网络小区范围扩展的场景中,可以将每个基站视为一个智能体,每个智能体通过与环境(即网络中的其他基站和用户)交互来学习如何调整其发射功率或偏置参数以优化网络性能。

2.2 基于Q-Learning的CRE算法
状态定义:状态可以定义为当前网络的状态,包括各个基站的负载情况、用户的分布和信道质量等。

动作定义:动作可以定义为基站可以采取的发射功率调整或偏置参数调整。

奖励函数设计:奖励函数应该能够反映网络性能的提升。例如,可以将奖励定义为负载均衡程度、吞吐量提升或用户满意度的提高等。

Q值函数更新:Q值函数用于评估在给定状态下采取特定动作的长期回报。在Q-Learning中,Q值函数通过以下公式进行更新:

eac18e2ad4d54bad77e8fc0737c3e2b0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

策略选择:在每个状态下,基站选择具有最大Q值的动作来执行。

探索与利用:为了平衡探索新动作和利用已知最优动作之间的权衡,可以采用ε-贪婪策略或其他探索策略。

3.MATLAB核心程序
if V_ < 0.1*diff %Step (4) Among those sets whose received powers are equal to the pilot signal powers, UEs usually choose one set that has %the lowest Q -value or rarely choose one set randomly to avoid local minima as ε-greedy policy [11]. user_q = [user_q,ju]; if Idiff<=length(diff1) RSRPp_max_quantized(ju)=Qtmp(I_); else RSRPm_max_quantized(ju)=Qtmp(I_-length(diff1)); end else %Step (3) If there are no equal received powers on each UE’s Q -table, they add new received powers to their own Q -tables. user_q = [user_q,0]; %没找到,更新q表 if Idiff<=length(diff1) Qtmp(I_)=RSRPp_max_quantized(ju); else Qtmp(I_)=RSRPm_max_quantized(ju); end end Qtable(:,ju)=Qtmp; end %Step (5) Each UE uses chosen set’s bias value as an action. for jm=1:Macro_cell for js=1:Small_cell for ju=1:Users for jsj = 1:Les [tes,Ies] = min([abs(bias1(jsj,ju)),abs(bias2(jsj,ju))]); if lp==1 %动作更新 action(jsj,jm,js,ju) = actions(Ies); else action(jsj,jm,js,ju) = action(jsj,jm,js,ju)+actions(Ies)/(1+CRE); %调整学习更新速率 end end end end end %Step (6) Each UE compares “macro received power”with “pico received power” added by bias value, %they try to connect to the larger one. %Step (7) BSs allocate each UE to each RB randomly.In this article, each UE can use only one RB. strongly interfered by the MBS’s signals. for ju=1:Users dats = [RSRPp_max(ju)+min(bias1(:,ju)),RSRPm_max(ju)+min(bias2(:,ju))]; [Vsel,Isel] = max(dats); RSRPsel(ju) = Vsel; end %Step (8) BSs calculate the number of outage UEs and pass it to UEs as a cost. Ns = 0; for jm=1:Macro_cell for js=1:Small_cell for ju=1:Users RSRPm_ = RSRPm(ju,jm); RSRPs_ = RSRPp(ju,js,jm); if RSRPm_<RSRPs_%the number of outage UEs Ns = Ns+1; end end end end cost = Ns/(Macro_cell*Small_cell*Users); %Step (9) Each UE reevaluates the chosen set’s Q -value at Step 4 as update based on Equation (6). alp = 0.5; gam = 0.9; for ju=1:Users idxx = randperm(Les); k = state(idxx(1)); v = max(Qtable(k,:)); D = cost*Rew(k)+gam*v-Qtable(:,ju)-0.2; Qtable(:,ju) = Qtable(:,ju) + alp*D; end %根据最后的动作action,调整CRE for jm=1:Macro_cell for js=1:Small_cell for ju=1:Users tmpss = (mean(action(:,jm,js,ju))); CRE2(jm,js,ju) = CRE + tmpss; end end end end

相关文章
|
1天前
|
安全 物联网 网络安全
网络安全与信息安全:防御前线的关键技术与策略
【4月更文挑战第21天】在数字化时代,数据成为了新的货币,而网络安全则是保护这些资产不受威胁的盾牌。本文深入探讨了网络安全漏洞的本质、加密技术的进展以及提升个人和企业安全意识的方法。通过分析当前网络攻击的模式和动机,我们提出了一系列切实可行的防御措施,旨在帮助读者构建更加安全的网络环境。
|
2天前
|
机器学习/深度学习 人工智能 算法
基于DCT和扩频的音频水印嵌入提取算法matlab仿真
本文介绍了结合DCT和扩频技术的音频水印算法,用于在不降低音质的情况下嵌入版权信息。在matlab2022a中实现,算法利用DCT进行频域处理,通过扩频增强水印的隐蔽性和抗攻击性。核心程序展示了水印的嵌入与提取过程,包括DCT变换、水印扩频及反变换步骤。该方法有效且专业,未来研究将侧重于提高实用性和安全性。
|
2天前
|
SQL 安全 算法
网络安全与信息安全:攻防之间的技术博弈
【4月更文挑战第20天】在数字化时代,网络安全与信息安全已成为维护国家安全、企业利益和个人隐私的重要屏障。本文深入探讨了网络安全漏洞的成因、加密技术的进展以及提升安全意识的必要性,旨在为读者提供全面的网络安全知识框架,同时分享最新的防御策略和技术手段。通过对网络攻防技术的分析,本文揭示了安全防御的复杂性,并强调了持续教育和技术创新在网络安全领域的重要性。
14 6
|
4天前
|
存储 监控 安全
网络安全与信息安全:防御前线的关键技术与意识
【4月更文挑战第18天】在数字化时代,数据成为了新的货币,而网络安全则是保护这些宝贵资产不受威胁的盾牌。本文深入探讨了网络安全的核心议题—漏洞管理、加密技术以及安全意识的重要性。通过分析当前网络环境中普遍存在的安全挑战,我们阐述了如何通过持续监控、定期更新和强化员工培训来构建一个更加坚固的防线。
|
5天前
|
机器学习/深度学习 数据可视化 网络架构
matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类
matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类
12 0
|
9天前
|
机器学习/深度学习 算法
【MATLAB】GA_ELM神经网络时序预测算法
【MATLAB】GA_ELM神经网络时序预测算法
280 9
|
12天前
|
存储 安全 网络安全
未来云计算与网络安全:技术创新与挑战
随着数字化时代的来临,云计算与网络安全成为了当今科技领域的焦点。本文从技术创新和挑战两个方面探讨了未来云计算与网络安全的发展趋势。在技术创新方面,人工智能、区块链和量子计算等新兴技术将为云计算和网络安全带来前所未有的发展机遇;而在挑战方面,隐私保护、数据泄露和网络攻击等问题也将不断考验着技术研究者和行业从业者的智慧和勇气。未来,只有不断创新,同时加强安全防护,才能实现云计算与网络安全的良性发展。
13 1
|
12天前
|
数据采集 大数据 数据安全/隐私保护
掌握网络抓取技术:利用RobotRules库的Perl下载器一览小红书的世界
本文探讨了使用Perl和RobotRules库在遵循robots.txt规则下抓取小红书数据的方法。通过分析小红书的robots.txt文件,配合亿牛云爬虫代理隐藏真实IP,以及实现多线程抓取,提高了数据采集效率。示例代码展示了如何创建一个尊重网站规则的数据下载器,并强调了代理IP稳定性和抓取频率控制的重要性。
掌握网络抓取技术:利用RobotRules库的Perl下载器一览小红书的世界
|
13天前
|
传感器 监控 安全
|
14天前
|
存储 人工智能 机器人
【Matlab】Matlab电话拨号音合成与识别(代码+论文)【独一无二】
【Matlab】Matlab电话拨号音合成与识别(代码+论文)【独一无二】