【Hello AI】安装和使用AIACC-AGSpeed(优化PyTorch深度学习模型)

简介: AIACC-AGSpeed(简称AGSpeed)专注于优化PyTorch深度学习模型在阿里云GPU异构计算实例上的计算性能,相比原始的神龙AI加速引擎AIACC,可以实现无感的计算优化性能。本文为您介绍安装和使用AGSpeed的方法。

AIACC-AGSpeed(简称AGSpeed)专注于优化PyTorch深度学习模型在阿里云GPU异构计算实例上的计算性能,相比原始的神龙AI加速引擎AIACC,可以实现无感的计算优化性能。本文为您介绍安装和使用AGSpeed的方法。

前提条件

已创建阿里云GPU实例,且GPU实例需满足以下要求:

  • 操作系统为Alibaba Cloud Linux、CentOS 7.x或Ubuntu 16.04以上版本。
  • 已安装NVIDIA Driver和CUDA 10.0或以上版本。

支持的版本列表

AGSpeed支持Python、PyTorch以及CUDA版本,版本对应关系及下载地址如下所示。

安装AGSpeed

  1. 下载Wheel软件包。

根据您环境中的Python、PyTorch以及CUDA版本,在支持的版本列表中选择相应wheel包进行下载。更多信息,请参见支持的版本列表

  1. 执行如下命令,安装AGSpeed。

在环境中直接使用pip install命令安装即可。

pip install ${WHEEL_NAME} # 这里的${WHEEL_NAME}替换为您下载的具体wheel软件包名称

使用AGSpeed

建议您尽可能在一切准备工作就绪,即刚好准备执行Train Loop之前,使用agspeed.optimize()对模型进行封装。

例如,模型已经放置到对应的device,并使用DDP优化等操作前,使用agspeed.optimize()对模型进行封装。

  1. 执行如下命令,适配代码。
import agspeed                  # 导入AGSpeed,用于在PyTorch后端中注册AGSpeed的IR优化Pass和优化后的NvFuser后端。
model = agspeed.optimize(model) # 优化模型,用于模型自动调用计算图抓取的API,并将计算图交由AGSpeed Backend Autotuner优化。
  1. 如果您的模型使用的是PyTorch AMP混合精度训练,需要额外在autocast()上下文中增加cache_enabled=False参数,示例代码如下所示。

说明本步骤仅适用于模型使用的是PyTorch AMP混合精度训练场景,使用其他精度(例如FP32)训练场景,请跳过本步骤。

因为TorchDynamo在抓取计算图后,会使用torch.jit.trace进一步将该计算图转换为TorchScript IR,从而调用后端进行优化,在autocast()上下文中直接调用torch.jit.trace会引发冲突,所以需要关闭cache_enabled参数,即您还需要额外在autocast()上下文中增加cache_enabled=False。更多信息,请参见PyTorch commit 

from torch.cuda.amp.autocast_model import autocast
# ...
# 在autocast上下文参数中添加cache_enabled=False
with autocast(cache_enabled=False):
    loss = model(inputs)
scaler.scale(loss).backward()
scaler.step(optimizer)
# ...
  1. 如果您使用的是PyTorch 1.12.x版本,且待训练模型中包含SiLU激活函数,请使用LD_PRELOAD环境变量导入SiLU激活函数符号微分公式。

说明本步骤仅适用于环境为PyTorch 1.12.x版本且待训练模型中包含SiLU激活函数场景,其他场景请跳过本步骤。

PyTorch 1.12.x版本中,TorchScript后端不包含aten::silu的符号微分公式,从而导致aten::silu op不会被纳入可微分子图的范畴,也就无法被后端的NvFuser融合。由于PyTorch的底层实现机制不允许您动态添加符号微分公式,因此AGSpeed将SiLU的符号微分公式集成在另一个动态链接库中(即LD_PRELOAD),将aten::silu的符号微分公式补充到TorchScript后端。在启动训练前,建议您使用LD_PRELOAD环境变量导入SiLU激活函数符号微分公式。

  1. 执行以下命令,查看AGSpeed安装路径。
python -c "import agspeed; print(agspeed.__path__[0])"

返回页面显示如下,获取AGSpeed安装路径。

  1. 执行如下命令,确认上述路径下是否包含libsymbolic_expand.so文件。
ls -l ${your_agspeed_install_path} # 将${your_agspeed_install_path}替换为您机器上的AGSpeed安装路径。

返回页面显示如下,表示该路径下已包含libsymbolic_expand.so文件。

  1. 执行以下命令,导入LD_PRELOAD环境变量。
# 将${your_agspeed_install_path}替换为您机器上的AGSpeed安装路径。
export LD_PRELOAD=${your_agspeed_install_path}/libsymbolic_expand.so
# Start Training...

运行过程中显示如下,表示已将aten::silu的符号微分公式补充到TorchScript后端。

代码示例

在您的训练代码中适配AGSpeed的代码示例如下所示,本示例中,代码前的+号表示本代码行属于新增代码。

+ import agspeed
  # 定义dataloader
  dataloader = ...
  # 定义模型对象
  model = ResNet()
  # 设置模型device
  model.to(device)
  # 定义优化器
  optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
  # 设置DDP
  if distributed:
      model = DDP(model)
+ model = agspeed.optimize(model)
  ############################## Train Loop分为FP32和AMP两种情况演示 ##############################
    ############### FP32 ###############
    # 若是以默认的FP32精度进行训练,不需要修改TrainLoop
  for data, target in dataloader:
      loss = model(data)
      loss.backward()
      optimizer.step()
      optimizer.zero_grad()
    ############### FP32 ###############
    ############### AMP ###############
    # 若是以混合精度进行训练,需要在autocast上下文中增加cache_enabled=False
+ with autocast(cache_enabled=False):
      for data, target in dataloader:
        loss = model(data)
        scaler.scale(loss).backward()
        scaler.step(optimizer)
        optimizer.zero_grad()
        scaler.update()
    ############### AMP ###############
  ############################## 通过LD_PRELOAD增加SiLU符号微分公式 ##############################
 # 显示的路径为您机器上的AGSpeed安装路径
  python -c "import agspeed; print(agspeed.__path__[0])"
 # 将${your_agspeed_install_path}替换为您机器上的AGSpeed安装路径
+ export LD_PRELOAD=${your_agspeed_install_path}/libsymbolic_expand.so
 # 执行训练命令
 python train.py

Log示例

Log示例用于帮助您确认是否已成功启用了AGSpeed的加速功能。

  • AGSpeed导入成功Log

导入AGSpeed时会自动注册AGSpeed的TorchScript IR优化Pass和优化后的NvFuser后端,如果导入操作完成后,出现以下Log表示AGSpeed已成功导入,您可以放心执行下一步操作。

  • AGSpeed Autotuning Log

AGSpeed会在训练过程中的前几个步骤中进行Autotuning操作,自动选择性能最佳的后端,如果训练过程的Autotuning操作中,出现以下Log表示AGSpeed加速功能已成功启用。

好啦!小弹的分享到此为止。我们更欢迎您分享您对阿里云产品的设想、对功能的建议或者各种吐槽,请扫描提交问卷并获得社区积分或精美礼品一份。https://survey.aliyun.com/apps/zhiliao/P4y44bm_8

【扫码填写上方调研问卷】

欢迎每位来到弹性计算的开发者们来反馈问题哦~

相关文章
|
2月前
|
云安全 人工智能 自然语言处理
阿里云x硅基流动:AI安全护栏助力构建可信模型生态
阿里云AI安全护栏:大模型的“智能过滤系统”。
1778 120
|
3月前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
1651 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
2月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
309 120
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
685 13
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
|
3月前
|
人工智能 数据安全/隐私保护 异构计算
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
457 8
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
|
11月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
445 22
|
8月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
1102 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
1088 6
|
10月前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
391 40

热门文章

最新文章