flink实时数仓保障体系

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: flink实时数仓保障体系

1 时效性保证

1:查看kafka延迟监控:flink 消费上游的 lag(比如看消费 kafka lag 情况)
2:分层和时延之间做好平衡和取舍,既需要保证复用性,又要避免造成链路过长。
3:乱序数据的处理。
4:提前压测,应对流量高峰期,特别是大促场景下,提前做好资源保障、任务优化等措施。
5:设置好延时基线,通过优化程序代码、资源、解决倾斜与反压等问题,使其控制在base line之内。
6:指标监控,监控任务failover情况、checkpoint指标、GC情况、作业反压等,出现异常告警。
7:Flink链路延迟监控的LatencyMarker观测延迟情况。

2 质量考量

两个主流实时数据处理架构:Lambda架构和Kappa架构,具体两个架构的介绍网上有很多资料,这里不再赘述。Lambda架构和Kappa架构各有其优劣势,但都支持数据的最终一致性,从某种程度上确保了数据质量,如何在Lambda架构和Kappa架构中取长补短,形成某种融合架构,这个话题会在新起文章中详细探讨。

当然数据质量也是个非常大的话题,只支持重跑和回灌并不能完全解决所有数据质量问题,只是从技术架构层面给出了补数据的工程方案。关于大数据数据质量问题,我们也会起一个新的话题讨论。

## 数据一致性
1:正确性实时计算端到端的一致性,对数据正确性的影响,常用手段就是通过输出幂等方式保障,这种方式要求输出使用存储介质支持重写,对于不支持幂等的存储,比较常用的就是DWD层的kafka, 可能会产生重复的数据,那么在下游使用的时候可以使用row_number() 语法进行去重,保证相同的key不会被多次计算;
2:离线与实时的一致性,需要保证使用数据源一致、加工业务逻辑一致。
## 数据完整性:
目标有效数据从数据源头到数据加工再到前端数据展示,不能因为加工逻辑权限,存储异常,前端展现异常等原因导致数据丢失。例如:
1:数据源层出现背压时,导致数据源头(MQ,KAFKA)消息积压,积压严重时导致资源耗尽,进而导致数据丢失;
2:数据处理层数据加工未按照需求进行加工,导致目标有效数据丢失;
3:数据存储层的存储容量写满时,导致新数据无法继续写入导致数据丢失;
4:数据加工正确性、数据加工及时性、数据快速恢复性构成数据完整性;
## 数据加工正确性:
目标源数据按照业务需求加工成目标有效数据,目标有效数据根据不同维度不同指标计算成需要展示的不同指标数据。例如:
1:数据源层原始数据包含不同联盟的点击数据,那么数据处理层过滤掉不需要的联盟点击数据,并将目标联盟的点击数据根据媒体和创意信息补齐当前点击所属的账号、计划、单元;
2:业务层根据媒体,账号、计划、单元不同维度计算出对应的点击总量;
## 数据加工及时性:
目标源数据从产生到前端展示的时间需要控制合理的时间范围内;
## 数据快速恢复性:
数据在流转路径中因为异常导致流转中断,数据停止在某一个环节中,当异常解决,系统恢复正常时,停止的数据(停止的数据)需要快速恢复流转,并且这种恢复是正确的,不应该存在重复的消费和加工或者遗漏。例如:
1:数据处理层因为消费程序性能问题导致消息积压,性能问题解决后数据挤压问题逐步得到缓解直到恢复正常水平;
2:数据处理层因为消费程序bug导致程序崩溃,重启后数据消费正常;
## 数据可监控性:
数据流转路径中关键节点的关键状态可以有效监控;
## 数据高可用性:
数据不能因为灾难性的问题导致丢失造成不能使用的情况,因此需要考虑实时数据消费应用集群和存储集群的主备和可容灾;

参考文章:

https://blog.csdn.net/weixin_44275820/article/details/119892620

3 稳定考量

这个话题涉及但不限于以下几点,这里简单给出应对的思路:

任务压测
提前压测应对流量高峰期,特别是大促场景下,提前做好资源保障、任务优化等措施。
任务分级
制定保障等级,从任务影响面大小、数据使用方来划分,一般情况公司层面优先于部门层面,外部使用优先于内部使用, 高优先级任务需要优先/及时响应、必要情况下做双链路保障机制;
做好指标监控
指标监控,监控任务failover情况、checkpoint指标、GC情况、作业反压等,出现异常告警。
高可用HA
整个实时Pipeline链路都应该选取高可用组件,确保理论上整体高可用;在数据关键链路上支持数据备份和重演机制;在业务关键链路上支持双跑融合机制
SLA保障
在确保集群和实时Pipeline高可用的前提下,支持动态扩容和数据处理流程自动漂移
弹性反脆弱
基于规则和算法的资源弹性伸缩;支持事件触发动作引擎的失效处理。
监控预警
集群设施层面,物理管道层面,数据逻辑层面的多方面监控预警能力
自动运维
能够捕捉并存档缺失数据和处理异常,并具备定期自动重试机制修复问题数据
上游元数据变更抗性
上游业务库要求兼容性元数据变更;实时Pipeline处理显式字段。

4 成本考量

这个话题涉及但不限于以下几点,这里简单给出应对的思路:

人力成本
通过支持数据应用平民化降低人才人力成本
资源成本
通过支持动态资源利用降低静态资源占用造成的资源浪费
运维成本
通过支持自动运维/高可用/弹性反脆弱等机制降低运维成本
试错成本
通过支持敏捷开发/快速迭代降低试错成本

5 敏捷考量

敏捷大数据是一整套理论体系和方法学,在前文已有所描述,从数据使用角度来看,敏捷考量意味着:配置化、SQL化、平民化。

6 管理考量

数据管理也是一个非常大的话题,这里我们会重点关注两个方面:元数据管理数据安全管理。如果在现代数仓多数据存储选型的环境下统一管理元数据和数据安全,是一个非常有挑战的话题,我们会在实时Pipeline上各个环节平台分别考虑这两个方面问题并给出内置支持,同时也可以支持对接外部统一的元数据管理平台和统一数据安全策略。

本文主要讲述了在实时数仓的建设中常见任务保障方法和理论,具体实践有一定的出入,但在总体思路上仍值得借鉴。

相关文章
|
2月前
|
SQL 运维 网络安全
【实践】基于Hologres+Flink搭建GitHub实时数据查询
本文介绍了如何利用Flink和Hologres构建GitHub公开事件数据的实时数仓,并对接BI工具实现数据实时分析。流程包括创建VPC、Hologres、OSS、Flink实例,配置Hologres内部表,通过Flink实时写入数据至Hologres,查询实时数据,以及清理资源等步骤。
|
6天前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
2月前
|
SQL 流计算 关系型数据库
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
阿里云OpenLake解决方案建立在开放可控的OpenLake湖仓之上,提供大数据搜索与AI一体化服务。通过元数据管理平台DLF管理结构化、半结构化和非结构化数据,提供湖仓数据表和文件的安全访问及IO加速,并支持大数据、搜索和AI多引擎对接。本文为您介绍以Flink作为Openlake方案的核心计算引擎,通过流式数据湖仓Paimon(使用DLF 2.0存储)和EMR StarRocks搭建流式湖仓。
473 5
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
|
2月前
|
运维 数据挖掘 网络安全
场景实践 | 基于Flink+Hologres搭建GitHub实时数据分析
基于Flink和Hologres构建的实时数仓方案在数据开发运维体验、成本与收益等方面均表现出色。同时,该产品还具有与其他产品联动组合的可能性,能够为企业提供更全面、更智能的数据处理和分析解决方案。
|
3月前
|
存储 数据采集 大数据
Flink实时湖仓,为汽车行业数字化加速!
本文由阿里云计算平台产品专家李鲁兵(云觉)分享,聚焦汽车行业大数据应用。内容涵盖市场趋势、典型大数据架构、产品市场地位及能力解读,以及典型客户案例。文章详细介绍了新能源汽车市场的快速增长、大数据架构分析、实时湖仓方案的优势,以及Flink和Paimon在车联网中的应用案例。
206 8
Flink实时湖仓,为汽车行业数字化加速!
|
2月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
78 1
|
4月前
|
存储 数据采集 OLAP
饿了么基于Flink+Paimon+StarRocks的实时湖仓探索
饿了么的实时数仓经历了多个阶段的演进。初期通过实时ETL、报表应用、联动及监控构建基础架构,随后形成了涵盖数据采集、加工和服务的整体数据架构。1.0版本通过日志和Binlog采集数据,但在研发效率和数据一致性方面存在问题。2.0版本通过Dataphin构建流批一体化系统,提升了数据一致性和研发效率,但仍面临新业务适应性等问题。最终,饿了么选择Paimon和StarRocks作为实时湖仓方案,显著降低了存储成本并提高了系统稳定性。未来,将进一步优化带宽瓶颈、小文件问题及权限控制,实现更多场景的应用。
460 7
饿了么基于Flink+Paimon+StarRocks的实时湖仓探索
|
5月前
|
消息中间件 关系型数据库 MySQL
实时计算 Flink版产品使用问题之使用CTAS同步MySQL到Hologres时出现的时区差异,该如何解决
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
SQL 关系型数据库 MySQL
实时数仓 Hologres操作报错合集之Flink CTAS Source(Mysql) 表字段从可空改为非空的原因是什么
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
5月前
|
搜索推荐 OLAP 流计算
OneSQL OLAP实践问题之基于 Flink 打造流批一体的数据计算平台如何解决
OneSQL OLAP实践问题之基于 Flink 打造流批一体的数据计算平台如何解决
68 1

热门文章

最新文章