基于遗传优化的多属性判决5G-Wifi网络切换算法matlab仿真

简介: 基于遗传优化的多属性判决5G-Wifi网络切换算法matlab仿真

1.算法运行效果图预览

Ttttttttttttt111111------66666666

2.算法运行软件版本
MATLAB2022a

3.算法理论概述
整个网络由一个5G基站,一个WIFI基站,以及一个移动终端设备构成。移动终端设备首先位于有5G网络环境,随后运动进入5G/WIFI的异构融合网络,进行网络的切换判决,最后移出该融合网络,再次进入5G网络覆盖范围。

   本文提出了一种基于遗传优化的多属性判决5G-Wifi网络切换算法,该算法通过结合遗传算法和多属性决策理论,实现了对网络切换过程的优化和加速。具体来说,我们首先使用遗传算法对网络切换过程中的参数进行优化,然后使用多属性决策方法对网络的多个属性进行综合评估,以得到最优的网络切换决策。

   我们首先定义网络切换的问题模型。设网络的属性集合为A={a1, a2, ..., an},其中每个属性ai表示网络的某个特性,如带宽、延迟、信号强度等。设网络集合为N={n1, n2, ..., nm},其中每个网络nj表示一个可用的网络。我们的目标是在给定的时刻t,找到一个最优的网络n*∈N,使得网络切换后的综合性能最佳。为了量化网络的综合性能,我们引入一个多属性判决函数F,该函数将网络的多个属性映射到一个实数空间:

F: A→R (1)

    其中R表示实数集。这个函数可以根据不同的应用场景和需求,采用不同的形式和权重。例如,可以采用加权平均法、TOPSIS法等方法来构建。

  算法的基本步骤如下:

第一:进行RSS的计算;

第二:根据反馈门限和RSS进行网络的识别,区分存在一个网络和两个网络;

第三:在存在两个网络的情况下进行AHP分层,获得多属性参数;

第四:初始化计算多属性参数的加权值;

第五:使用改进后的遗传算法,对加权值进行优化;

第六:设计一种结合用户QOS的网络收益函数,用来判断是否切换;

第七:门限的调整,驻留时间的调整

其中,遗传算法的适应度函数如下:

e2985f7ec86285fde32f6410bca97dbf_82780907_202401290015550928490506_Expires=1706459155&Signature=WsbQprB%2Bl9pB8AGLO6fUpevUgKc%3D&domain=8.png

我们对五个属性参数进行简单的介绍:

网络覆盖范围R:网络覆盖范围定义为设备和网络基站之间的间隔。

信号强度P:即RSS值。

网络的使用费用C:使用费用值为不同的单位流量的费用。

服务速率S:即不同的网络的速率。

传输延迟D:即不同的网络的延迟

4.部分核心程序

%P5g,D5g,S5g,L5g,C5g
C=[1,    3,  5, 7, 9;
   1/3, 1,  3, 5, 7; 
   1/5,    1/3,1, 3, 5;
   1/7,    1/5, 1/3, 1,    3;
   1/9,    1/7, 1/5, 1/3,    1];
          %获得收益函数
          %获得收益函数
          f5g = (Rs(1,1)^w1)*(Rs(1,2)^w2)*(Rs(1,3)^w3)*(Rs(1,4)^w4)*(Rs(1,5)^w5) + TQOS_5g;
          fwf = (Rs(2,1)^w1)*(Rs(2,2)^w2)*(Rs(2,3)^w3)*(Rs(2,4)^w4)*(Rs(2,5)^w5) + TQOS_wf;
          %进行判决
          %进行判决
          if f5g > fwf
             f1(i) = 1;
             T1_5g = T1_5g + 1;
          else
             f1(i) = 0; 
             T1_wf = T1_wf + 1;
          end
          if abs(f5g-fwf) < 1
             STOP_TIME=STOP_TIME-1;
          else
             STOP_TIME=STOP_TIME+1;  
          end
          STOP_TIME=min(STOP_TIME,36);
          STOP_TIME=max(STOP_TIME,4);
          %驻留时间
          %驻留时间
          if i > STOP_TIME
             C1(i) = mean(f1(i-STOP_TIME+1:i)); 
             C2    = mean(C1(i-STOP_TIME+1:i)); 
             f0(i) =(sign(C2-0.49)+1)/2;
          else
             C1(i) = mean(f1(1:i));  
             C2    = mean(C1(1:i));
             f0(i) =(sign(C2-0.49)+1)/2;
          end
          %计算收益值变化值,如果变换较大,则反馈更新权值,否则权值不变
          %计算收益值变化值,如果变换较大,则反馈更新权值,否则权值不变
          ERR = abs(fwf-f5g);
          if ERR < 1
             is_opt = 0; 
          else
             is_opt = 1;  
          end
       else
           %存在远大于的情况,则认为是只检测一个网络
           if RSS_5G   >= Beta*RSS_WIFI%5G远大于WIFI  
              f1(i) = 1;
              RSS   = RSS_5G;
              T1_5g = T1_5g + 1;
           end
           if RSS_WIFI >= Beta*RSS_5G%WIFI远大于5G
              f1(i) = 0; 
              RSS   = RSS_WIFI;
              T1_wf = T1_wf + 1;
           end  
           %驻留时间
           %驻留时间
           if i > STOP_TIME
              C1(i) = mean(f1(i-STOP_TIME+1:i)); 
              C2    = mean(C1(i-STOP_TIME+1:i)); 
              f0(i) =(sign(C2-0.49)+1)/2;
           else
              C1(i) = mean(f1(1:i));  
              C2    = mean(C1(1:i));
              f0(i) =(sign(C2-0.49)+1)/2;
           end
       end   
    end

    %门限更新
    Tt(i) = 0.5*RSS;
    if i == 1
       T = Tt(i)
    else
       T = alpha*Tt(i) + (1-alpha)*Tt(i-1);%门限做二次平滑 
    end
    %统计切换次数
    if i > 3
        if abs(f0(i)-f0(i-1))>0.1
           count = count + 1;
        end
        CNT(i)=count;
    end 
end%Over i = 1:N



figure;
plot(f0,'b','Linewidth',2);
hold on;
plot(1:N,0.5*ones(1,N),'r','Linewidth',2);
grid on;
xlabel('Times');
ylabel('判决门限');
axis([0,N,-0.2,1.2]);
text(N/4,1.1,'接入5G')
text(3*N/4,0.1,'接入WIFI')
title('本课题算法');

figure;
plot(1:N,CNT,'r','Linewidth',2);
grid on;
xlabel('Times');
ylabel('切换次数');
title('本课题算法');
save R1.mat f0 N CNT
相关文章
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
8天前
|
人工智能 安全 5G
5G网络安全全解析——新机遇与潜在风险
5G网络安全全解析——新机遇与潜在风险
40 4
|
18天前
|
算法 定位技术 数据安全/隐私保护
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
|
30天前
|
机器学习/深度学习 算法 JavaScript
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
|
19天前
|
传感器 存储 算法
基于ECC簇内分组密钥管理算法的无线传感器网络matlab性能仿真
本程序基于ECC(椭圆曲线密码学)簇内分组密钥管理算法,对无线传感器网络(WSN)进行MATLAB性能仿真。通过对比网络通信开销、存活节点数量、网络能耗及数据通信量四个关键指标,验证算法的高效性和安全性。程序在MATLAB 2022A版本下运行,结果无水印展示。算法通过将WSN划分为多个簇,利用ECC生成和分发密钥,降低计算与通信成本,适用于资源受限的传感器网络场景,确保数据保密性和完整性。
|
4月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
121 17
|
4月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
91 10
|
4月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
4月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
112 10
|
4月前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。
下一篇
oss创建bucket