Flume

简介: Flume

第1章 Flume概述

(1)Flume官网地址:http://flume.apache.org/

(2)文档查看地址:http://flume.apache.org/FlumeUserGuide.html

(3)下载地址:http://archive.apache.org/dist/flume/

1.1 Flume定义

FlumeCloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统Flume基于流式架构,灵活简单。

为什么选用flume?

image.png

1.2 Flume基础架构

Flume组成架构如图所示

image.png

image.pngimage.pngimage.png

1.2.1 Agent

Agent是一个JVM进程,它以事件的形式将数据从源头送至目的。

Agent主要有3个部分组成,SourceChannelSink

1.2.2 Source

Source是负责接收数据到Flume Agent的组件。Source组件可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec、jms、spooling directorynetcattaildirsequence generator、syslog、http、legacy。

1.2.3 Sink

Sink不断地轮询Channel中的事件且批量地移除它们,并将这些事件批量写入到存储或索引系统、或者被发送到另一个Flume Agent。

Sink组件目的地包括hdfsloggeravro、thrift、ipc、fileHBase、solr、自定义。

image.png

1.2.4 Channel

Channel是位于Source和Sink之间的缓冲区。因此,Channel允许Source和Sink运作在不同的速率上。Channel是线程安全的,可以同时处理几个Source的写入操作和几个Sink的读取操作。

Flume自带两种Channel:Memory ChannelFile Channel

Memory Channel是内存中的队列。Memory Channel在不需要关心数据丢失的情景下适用。如果需要关心数据丢失,那么Memory Channel就不应该使用,因为程序死亡、机器宕机或者重启都会导致数据丢失。

File Channel将所有事件写到磁盘。因此在程序关闭或机器宕机的情况下不会丢失数据。

1.2.5 Event

传输单元,Flume数据传输的基本单元,以Event的形式将数据从源头送至目的地。Event由HeaderBody两部分组成,Header用来存放该event的一些属性,为K-V结构,Body用来存放该条数据,形式为字节数组。

image.png

image.png

注:配置文件来源于官方手册http://flume.apache.org/FlumeUserGuide.html

image.png

2.2 Flume入门案例

2.2.1 监控端口数据官方案例

1)案例需求:

使用Flume监听一个端口,收集该端口数据,并打印到控制台。 

2)需求分析:

image.png

3)实现步骤:

(1)安装netcat工具

[atguigu@hadoop102 software]$ sudo yum install -y nc

(2)判断44444端口是否被占用

[atguigu@hadoop102 flume-telnet]$ sudo netstat -nlp | grep 44444

(3)创建Flume Agent配置文件flume-netcat-logger.conf

4在flume目录下创建job文件夹并进入job文件夹

[atguigu@hadoop102 flume]$ mkdir job

[atguigu@hadoop102 flume]$ cd job/

5在job文件夹下创建Flume Agent配置文件flume-netcat-logger.conf。

[atguigu@hadoop102 job]$ vim flume-netcat-logger.conf

6在flume-netcat-logger.conf文件中添加如下内容。

添加内容如下:
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

image.png

有了这个配置文件,我们就可以按如下方式启动 Flume:

官方写法

bin/flume-ng agent -n $agent_name -c conf -f conf/flume-conf.properties.template
bin/flume-ng agent -n a1 -c conf -f job/net-flume-logger.conf -Dflume.root.logger=INFO,console

         


7)先开启flume监听端口

第一种写法:

bin/flume-ng agent --conf conf/ --name a1 --conf-file job/flume-netcat-logger.conf -Dflume.root.logger=INFO,console

第二种写法:

bin/flume-ng agent -c conf/ -n a1 -f job/flume-netcat-logger.conf -Dflume.root.logger=INFO,console


参数说明

--conf/-c:表示配置文件存储conf/目录

--name/-n表示给agent起名为a1

--conf-file/-fflume本次启动读取的配置文件是在job文件夹下的flume-telnet.conf文件

-Dflume.root.logger=INFO,console :-D表示flume运行时动态修改flume.root.logger参数属性值,并控制台日志打印级别设置为INFO级别。日志级别包括:log、infowarn、error。

8)使用netcat工具向本机的44444端口发送内容

nc localhost 44444
hello 
atguigu

9)在Flume监听页面观察接收数据情况

image.png

2.2.2 实时监控单个追加文件:不能断点续传

1)案例需求:实时监控Hive日志,并上传到HDFS中

2)需求分析

实时读取本地文件到HDFS

image.png

3)实现步骤:

(1)Flume要想将数据输出到HDFS,依赖Hadoop相关jar包

检查/etc/profile.d/my_env.sh文件,确认Hadoop和Java环境变量配置正确

JAVA_HOME=/opt/module/jdk1.8.0_212
HADOOP_HOME=/opt/module/ha/hadoop-3.1.3
PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
export PATH JAVA_HOME HADOOP_HOME

(2)创建flume-file-hdfs.conf文件创建文件

vim flume-file-hdfs.conf

要想读取Linux系统中的文件,就得按照Linux命令的规则执行命令由于Hive日志在Linux系统中所以读取文件的类型选择exec即execute执行的意思。表示执行Linux命令来读取文件。

添加如下内容

# Name the components on this agent
a2.sources = r2
a2.sinks = k2
a2.channels = c2
# Describe/configure the source
a2.sources.r2.type = exec
a2.sources.r2.command = tail -F /opt/module/hive/logs/hive.log
# Describe the sink
a2.sinks.k2.type = hdfs
a2.sinks.k2.hdfs.path = hdfs://hadoop102:9820/flume/%Y%m%d/%H
#上传文件的前缀
a2.sinks.k2.hdfs.filePrefix = logs-
#是否按照时间滚动文件夹
a2.sinks.k2.hdfs.round = true
#多少时间单位创建一个新的文件夹
a2.sinks.k2.hdfs.roundValue = 1
#重新定义时间单位
a2.sinks.k2.hdfs.roundUnit = hour
#是否使用本地时间戳
a2.sinks.k2.hdfs.useLocalTimeStamp = true
#积攒多少个Event才flush到HDFS一次
a2.sinks.k2.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a2.sinks.k2.hdfs.fileType = DataStream
#多久生成一个新的文件
a2.sinks.k2.hdfs.rollInterval = 60
#设置每个文件的滚动大小
a2.sinks.k2.hdfs.rollSize = 134217700
#文件的滚动与Event数量无关
a2.sinks.k2.hdfs.rollCount = 0
# Use a channel which buffers events in memory
a2.channels.c2.type = memory
a2.channels.c2.capacity = 1000
a2.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r2.channels = c2
a2.sinks.k2.channel = c2

注意:对于所有与时间相关的转义序列,Event Header中必须存在以 “timestamp”的key(除非hdfs.useLocalTimeStamp设置为true,此方法会使用TimestampInterceptor自动添加timestamp)。

a3.sinks.k3.hdfs.useLocalTimeStamp = true

image.png

(3)运行Flume

bin/flume-ng agent -n a2 -c conf -f job/flume-file-hdfs.conf

(4)开启Hadoop和Hive并操作Hive产生日志

[atguigu@hadoop102 hadoop-2.7.2]$ sbin/start-dfs.sh
[atguigu@hadoop103 hadoop-2.7.2]$ sbin/start-yarn.sh
[atguigu@hadoop102 hive]$ bin/hive
hive (default)>

(5)在HDFS上查看文件

2.2.3 实时监控目录下多个新文件:不能监控动态变化的

1)案例需求:使用Flume监听整个目录的文件,并上传至HDFS

2)需求分析:

image.png

3)3)实现步骤:

(1)创建配置文件flume-dir-hdfs.conf

创建一个文件

 vim flume-dir-hdfs.conf
a3.sources = r3
a3.sinks = k3
a3.channels = c3
# Describe/configure the source
a3.sources.r3.type = spooldir
a3.sources.r3.spoolDir = /opt/module/flume/upload
a3.sources.r3.fileSuffix = .COMPLETED
a3.sources.r3.fileHeader = true
#忽略所有以.tmp结尾的文件,不上传
a3.sources.r3.ignorePattern = ([^ ]*\.tmp)
# Describe the sink
a3.sinks.k3.type = hdfs
a3.sinks.k3.hdfs.path = hdfs://hadoop102:9820/flume/upload/%Y%m%d/%H
#上传文件的前缀
a3.sinks.k3.hdfs.filePrefix = upload-
#是否按照时间滚动文件夹
a3.sinks.k3.hdfs.round = true
#多少时间单位创建一个新的文件夹
a3.sinks.k3.hdfs.roundValue = 1
#重新定义时间单位
a3.sinks.k3.hdfs.roundUnit = hour
#是否使用本地时间戳
a3.sinks.k3.hdfs.useLocalTimeStamp = true
#积攒多少个Event才flush到HDFS一次
a3.sinks.k3.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a3.sinks.k3.hdfs.fileType = DataStream
#多久生成一个新的文件
a3.sinks.k3.hdfs.rollInterval = 60
#设置每个文件的滚动大小大概是128M
a3.sinks.k3.hdfs.rollSize = 134217700
#文件的滚动与Event数量无关
a3.sinks.k3.hdfs.rollCount = 0
# Use a channel which buffers events in memory
a3.channels.c3.type = memory
a3.channels.c3.capacity = 1000
a3.channels.c3.transactionCapacity = 100
# Bind the source and sink to the channel
a3.sources.r3.channels = c3
a3.sinks.k3.channel = c3
"[^ ]*.tmp"的意思是匹配任意字符(除了空格)零次或多次,然后是一个点,最后是tmp这个字符串。这个正则表达式用于匹配文件名为.tmp结尾的文件。

(2)启动监控文件夹命令

bin/flume-ng agent --conf conf/ --name a3 --conf-file job/flume-dir-hdfs.conf

明:在使用Spooling Directory Source时,不要在监控目录中创建并持续修改文件;上传完成的文件会以.COMPLETED结尾;被监控文件夹每500毫秒扫描一次文件变动。

(3)向upload文件夹中添加文件
在/opt/module/flume目录下创建upload文件夹
[atguigu@hadoop102 flume]$ mkdir upload
向upload文件夹中添加文件
[atguigu@hadoop102 upload]$ touch atguigu.txt
[atguigu@hadoop102 upload]$ touch atguigu.tmp
[atguigu@hadoop102 upload]$ touch atguigu.log
(4)查看HDFS上的数据

2.2.4 实时监控目录下的多个追加文件

Exec source适用于监控一个实时追加的文件,不能实现断点续传;Spooldir Source适合用于同步新文件,但不适合对实时追加日志的文件进行监听并同步;而Taildir Source适合用于监听多个实时追加的文件,并且能够实现断点续传。

1)案例需求:使用Flume监听整个目录的实时追加文件,并上传至HDFS

2)需求分析:

image.png

3)实现步骤:

(1)创建配置文件flume-taildir-hdfs.conf

创建一个文件

vim flume-taildir-hdfs.conf
a3.sources = r3
a3.sinks = k3
a3.channels = c3
# Describe/configure the source
a3.sources.r3.type = TAILDIR
a3.sources.r3.positionFile = /opt/module/flume/tail_dir.json
a3.sources.r3.filegroups = f1 f2
a3.sources.r3.filegroups.f1 = /opt/module/flume/files/.*file.*
a3.sources.r3.filegroups.f2 = /opt/module/flume/files2/.*log.*
# Describe the sink
a3.sinks.k3.type = hdfs
a3.sinks.k3.hdfs.path = hdfs://hadoop102:9820/flume/upload2/%Y%m%d/%H
#上传文件的前缀
a3.sinks.k3.hdfs.filePrefix = upload-
#是否按照时间滚动文件夹
a3.sinks.k3.hdfs.round = true
#多少时间单位创建一个新的文件夹
a3.sinks.k3.hdfs.roundValue = 1
#重新定义时间单位
a3.sinks.k3.hdfs.roundUnit = hour
#是否使用本地时间戳
a3.sinks.k3.hdfs.useLocalTimeStamp = true
#积攒多少个Event才flush到HDFS一次
a3.sinks.k3.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a3.sinks.k3.hdfs.fileType = DataStream
#多久生成一个新的文件
a3.sinks.k3.hdfs.rollInterval = 60
#设置每个文件的滚动大小大概是128M
a3.sinks.k3.hdfs.rollSize = 134217700
#文件的滚动与Event数量无关
a3.sinks.k3.hdfs.rollCount = 0
# Use a channel which buffers events in memory
a3.channels.c3.type = memory
a3.channels.c3.capacity = 1000
a3.channels.c3.transactionCapacity = 100
# Bind the source and sink to the channel
a3.sources.r3.channels = c3
a3.sinks.k3.channel = c3

image.png

(2)启动监控文件夹命令

bin/flume-ng agent -c conf/ -n a3 -f job/flume-taildir-hdfs.conf

(3)向files文件夹中追加内容

/opt/module/flume目录下创建files文件

mkdir files
向upload文件夹中添加文件
[atguigu@hadoop102 files]$ echo hello >> file1.txt
[atguigu@hadoop102 files]$ echo atguigu >> file2.txt

(4)查看HDFS上的数据

Taildir说明:

Taildir Source维护了一个json格式的position File,其会定期的往position File中更新每个文件读取到的最新的位置,因此能够实现断点续传。Position File的格式如下:

{"inode":2496272,"pos":12,"file":"/opt/module/flume/files/file1.txt"}
{"inode":2496275,"pos":12,"file":"/opt/module/flume/files/file2.txt"}

注:Linux中储存文件元数据的区域就叫做inode每个inode都有一个号码,操作系统用inode号码来识别不同的文件Unix/Linux系统内部不使用文件名,而使用inode号码来识别文件

TAILDIR解决方案:
logback不更名操作,就是不按天生成
修改源码

Flume进阶

image.png

3.2 Flume Agent内部原理

image.png

重要组件:
1)ChannelSelector
ChannelSelector的作用就是选出Event将要被发往哪个Channel。其共有两种类型,分别是Replicating(复制)和Multiplexing(多路复用)[mʌltɪˌpleks]。
ReplicatingSelector会将同一个Event发往所有的Channel,Multiplexing会根据相应的原则,将不同的Event发往不同的Channel。
2)SinkProcessor [prɑˌsesər]
SinkProcessor共有三种类型,分别是DefaultSinkProcessor、LoadBalancingSinkProcessor和FailoverSinkProcessor
DefaultSinkProcessor对应的是单个的Sink,LoadBalancingSinkProcessor和FailoverSinkProcessor对应的是Sink Group,LoadBalancingSinkProcessor可以实现负载均衡的功能,FailoverSinkProcessor可以错误恢复的功能。

3.3 Flume拓扑结构

3.3.1 简单串联

image.png

这种模式是将多个flume顺序连接起来了,从最初的source开始到最终sink传送的目的存储系统。此模式不建议桥接过多的flume数量 flume数量过多不仅会影响传输速率,而且一旦传输过程中某个节点flume宕机,会影响整个传输系统。

3.3.2 复制和多路复用

image.png

Flume支持将事件流向一个或者多个目的地。这种模式可以将相同数据复制到多个channel中,或者将不同数据分发到不同的channel中,sink可以选择传送到不同的目的地。

3.3.3 负载均衡和故障转移

image.png

Flume支持使用将多个sink逻辑上分到一个sink组,sink组配合不同的SinkProcessor可以实现负载均衡和错误恢复的功能。

3.3.4 聚合

image.png

这种模式是我们最常见的,也非常实用,日常web应用通常分布在上百个服务器,大者甚至上千个、上万个服务器。产生的日志,处理起来也非常麻烦。用flume的这种组合方式能很好的解决这一问题,每台服务器部署一个flume采集日志,传送到一个集中收集日志的flume,再由此flume上传到hdfs、hive、hbase等,进行日志分析。

3.4 Flume企业开发案例

3.4.1 复制和多路复用

1)案例需求

使用Flume-1监控文件变动,Flume-1将变动内容传递给Flume-2,Flume-2负责存储到HDFS。同时Flume-1将变动内容传递给Flume-3,Flume-3负责输出到Local FileSystem。

2)需求分析:

image.png

3)实现步骤:

(1)准备工作

/opt/module/flume/job目录下创建group1文件

cd group1/

/opt/module/datas/目录下创建flume3文件

mkdir flume3

(2)创建flume-file-flume.conf

配置1个接收日志文件的source和两个channel、两个sink,分别输送给flume-flume-hdfs和flume-flume-dir

编辑配置文件

 vim flume-file-flume.conf
添加如下内容
# Name the components on this agent
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
# 将数据流复制给所有channel
a1.sources.r1.selector.type = replicating
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /opt/module/hive/logs/hive.log
a1.sources.r1.shell = /bin/bash -c
# Describe the sink
# sink端的avro是一个数据发送者
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop102
a1.sinks.k1.port = 4141
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = hadoop102
a1.sinks.k2.port = 4142
# Describe the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.channels.c2.type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1 c2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c2

image.png

image.png

image.png

(3)创建flume-flume-hdfs.conf

配置上级Flume输出的Source,输出到HDFS的Sink

编辑配置文件

vim flume-flume-hdfs.conf

添加如下内容

# Name the components on this agent
a2.sources = r1
a2.sinks = k1
a2.channels = c1
# Describe/configure the source
# source端的avro是一个数据接收服务
a2.sources.r1.type = avro
a2.sources.r1.bind = hadoop102
a2.sources.r1.port = 4141
# Describe the sink
a2.sinks.k1.type = hdfs
a2.sinks.k1.hdfs.path = hdfs://hadoop102:9820/flume2/%Y%m%d/%H
#上传文件的前缀
a2.sinks.k1.hdfs.filePrefix = flume2-
#是否按照时间滚动文件夹
a2.sinks.k1.hdfs.round = true
#多少时间单位创建一个新的文件夹
a2.sinks.k1.hdfs.roundValue = 1
#重新定义时间单位
a2.sinks.k1.hdfs.roundUnit = hour
#是否使用本地时间戳
a2.sinks.k1.hdfs.useLocalTimeStamp = true
#积攒多少个Event才flush到HDFS一次
a2.sinks.k1.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a2.sinks.k1.hdfs.fileType = DataStream
#多久生成一个新的文件
a2.sinks.k1.hdfs.rollInterval = 30
#设置每个文件的滚动大小大概是128M
a2.sinks.k1.hdfs.rollSize = 134217700
#文件的滚动与Event数量无关
a2.sinks.k1.hdfs.rollCount = 0
# Describe the channel
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1

(4)创建flume-flume-dir.conf

配置上级Flume输出的Source,输出本地目录的Sink

编辑配置文件

# Name the components on this agent
a3.sources = r1
a3.sinks = k1
a3.channels = c2
# Describe/configure the source
a3.sources.r1.type = avro
a3.sources.r1.bind = hadoop102
a3.sources.r1.port = 4142
# Describe the sink
a3.sinks.k1.type = file_roll
a3.sinks.k1.sink.directory = /opt/module/data/flume3
# Describe the channel
a3.channels.c2.type = memory
a3.channels.c2.capacity = 1000
a3.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a3.sources.r1.channels = c2
a3.sinks.k1.channel = c2
提示:输出的本地目录必须是已经存在的目录,如果该目录不存在,并不会创建新的目录。

(5)执行配置文件

分别启动对应的flume进程:flume-flume-dir,flume-flume-hdfs,flume-file-flume

bin/flume-ng agent -c conf/ -n a2 -f job/group1/flume-flume-hdfs.conf


bin/flume-ng agent -c conf/ -n a1 -f job/group1/flume-file-flume.conf
bin/flume-ng agent -c conf/ -n a3 -f job/group1/flume-f

(6)启动Hadoop和Hive

image.png

8)检查/opt/module/datas/flume3目录中数据

image.png

image.png

image.png

检查端口

image.png


image.png

image.png

tail -F实时采集信息

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
相关文章
|
机器人
阿里云 RPA 的成本效益分析
机器人流程自动化(RPA)技术在企业数字化转型中扮演着越来越重要的角色。阿里云 RPA 作为一种高效的自动化解决方案,不仅可以提高业务效率,还可以降低运营成本。本文将对阿里云 RPA 的成本效益进行分析,帮助企业更好地评估和利用这一技术。
|
Linux 虚拟化 Docker
Windows10安装Docker Desktop(大妈看了都会)
Windows10安装Docker Desktop(大妈看了都会)
|
分布式计算 Hadoop 大数据
大数据平台搭建(容器环境)——Flume1.9 安装配置
大数据平台搭建(容器环境)——Flume1.9 安装配置
大数据平台搭建(容器环境)——Flume1.9 安装配置
|
弹性计算 安全 数据安全/隐私保护
2024年阿里云幻兽帕鲁Palworld联机服务器搭建部署指南,图文教程
近年来,幻兽帕鲁以其独特的游戏魅力,迅速成为玩家们的热门选择。对于许多想要与好友一起体验这款游戏的玩家来说,如何搭建一个稳定的联机服务器成为了他们关注的焦点。今天,我将为大家带来一篇简单易懂的图文教程,让你轻松搭建幻兽帕鲁的联机服务器,与好友们畅快游戏。
|
存储 缓存 流计算
Flink / Scala- BroadCast 广播流数据先到再处理 Source 数据
Flink 支持增加 DataStream KeyBy 之后 conncet BroadCastStream 形成 BroadConnectedStream,广播流内数据一般为不间断更新的上下文信息,这里介绍如果等待广播流初始化完毕再处理 Source 数据
1882 0
Flink / Scala- BroadCast 广播流数据先到再处理 Source 数据
|
SQL Oracle 关系型数据库
实时计算 Flink版产品使用合集之delete主键删除源表一条记录,目标表未删除数据问题如何解决
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
591 1
|
JSON 监控 数据格式
Grafana导入 json 文件的 dashboard 错误 Templating Failed to upgrade legacy queries Datasource xxx not found
Grafana导入 json 文件的 dashboard 错误 Templating Failed to upgrade legacy queries Datasource xxx not found
963 0
|
SQL 分布式计算 DataWorks
DataWorks操作报错合集之如何解决datax同步任务时报错ODPS-0410042:Invalid signature value
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
|
SQL Java Scala
flink-cdc SQL Server op 字段如何获取?
Flink CDC 是 Apache Flink 的组件,用于捕获数据库变更事件。对 SQL Server,通过 Debezium 连接器支持变更数据捕获。`op` 字段标识操作类型(INSERT、UPDATE、DELETE)。配置包括添加依赖及设定 Source 连接器,可通过 Flink SQL 或 Java/Scala 完成。示例查询利用 `op` 字段筛选处理变更事件。
626 1
基于simulink的光伏并网逆变器电网系统建模与仿真
本课题使用Simulink实现光伏并网逆变器的建模与仿真,该逆变器负责将光伏电池板产生的直流电转换为与电网同步的交流电。系统通过最大功率点跟踪(MPPT)、DC-DC转换、DC-AC转换及滤波处理,确保电能质量并与电网同步。Simulink模型基于MATLAB 2022a版本构建。