【数位dp】【C++算法】600. 不含连续1的非负整数

简介: 【数位dp】【C++算法】600. 不含连续1的非负整数

涉及知识点

数位dp

LeetCode600. 不含连续1的非负整数

给定一个正整数 n ,请你统计在 [0, n] 范围的非负整数中,有多少个整数的二进制表示中不存在 连续的 1 。

示例 1:

输入: n = 5

输出: 5

解释:

下面列出范围在 [0, 5] 的非负整数与其对应的二进制表示:

0 : 0

1 : 1

2 : 10

3 : 11

4 : 100

5 : 101

其中,只有整数 3 违反规则(有两个连续的 1 ),其他 5 个满足规则。

示例 2:

输入: n = 1

输出: 2

示例 3:

输入: n = 2

输出: 3

提示:

1 <= n <= 109

数位dp

直接使用封装好的类。

结果:int 最小值:‘0’ 最大值:‘1’

当前值为’1’时,前值必须为‘0’。

当前值为’0’时,前值‘0’ ‘1’ 皆可。

代码

封装类

template<class ELE, class ResultType, ELE minEle, ELE maxEle>
class CLowUperr
{
public:
  CLowUperr(int iResutlCount):m_iResutlCount(iResutlCount)
  {
  }
  void Init(const ELE* pLower, const ELE* pHigh, int iNum)
  {
    m_vPre.assign(4, vector<ResultType>(m_iResutlCount));
    if (iNum <= 0)
    {
      return;
    }
    InitPre(pLower, pHigh);
    iNum--;
    while (iNum--)
    {
      pLower++;
      pHigh++;
      vector<vector<ResultType>> dp(4, vector<ResultType>(m_iResutlCount));
      OnInitDP(dp);
      //处理非边界
      for (auto tmp = minEle; tmp <= maxEle; tmp++)
      {
        OnEnumOtherBit(dp[0], m_vPre[0], tmp);
      }
      //处理下边界
      OnEnumOtherBit(dp[1], m_vPre[1], *pLower);
      for (auto tmp = *pLower + 1; tmp <= maxEle; tmp++)
      {
        OnEnumOtherBit(dp[0], m_vPre[1], tmp );
      }
      //处理上边界
      OnEnumOtherBit(dp[2], m_vPre[2], *pHigh );
      for (auto tmp = minEle; tmp < *pHigh; tmp++)
      {
        OnEnumOtherBit(dp[0], m_vPre[2], tmp );
      }
      //处理上下边界
      if (*pLower == *pHigh)
      {
        OnEnumOtherBit(dp[3], m_vPre[3], *pLower);
      }
      else
      {
        OnEnumOtherBit(dp[1], m_vPre[3], *pLower );
        for (auto tmp = *pLower + 1; tmp < *pHigh; tmp++)
        {
          OnEnumOtherBit(dp[0], m_vPre[3], tmp );
        }
        OnEnumOtherBit(dp[2], m_vPre[3], *pHigh );
      }
      m_vPre.swap(dp);
    }
  }
  /*ResultType Total(int iMinIndex, int iMaxIndex)
  {
    ResultType ret;
    for (int status = 0; status < 4; status++)
    {
      for (int index = iMinIndex; index <= iMaxIndex; index++)
      {
        ret += m_vPre[status][index];
      }
    }
    return ret;
  }*/
protected:
  const int m_iResutlCount;
  void InitPre(const ELE* const pLower, const ELE* const pHigh)
  {
    for (ELE cur = *pLower; cur <= *pHigh; cur++)
    {
      int iStatus = 0;
      if (*pLower == cur)
      {
        iStatus = *pLower == *pHigh ? 3 : 1;
      }
      else if (*pHigh == cur)
      {
        iStatus = 2;
      }
      OnEnumFirstBit(m_vPre[iStatus], cur);
    }
  }
  virtual void OnEnumOtherBit(vector<ResultType>& dp, const vector<ResultType>& vPre, ELE curValue) = 0;
  virtual void OnEnumFirstBit(vector<ResultType>& vPre, const ELE curValue) = 0;
  virtual void OnInitDP(vector<vector<ResultType>>& dp)
  {
  }
  vector<vector<ResultType>> m_vPre;
};

核心代码

class CCharLowerUper : public CLowUperr<char, int, '0', '1'>
{
public:
  using CLowUperr<char, int, '0', '1'>::CLowUperr;
  int Total(int iMinIndex, int iMaxIndex)
  {
    int ret = 0;
    for (int index = iMinIndex; index <= iMaxIndex; index++)
    {
      int cur = 0;
      for (int status = 0; status < 4; status++)
      {
        cur += m_vPre[status][index];
      }
      ret += cur;
    }
    return ret;
  }
protected:
  virtual void OnEnumFirstBit(vector<int>& vPre, const char curValue)
  {
    const int index = curValue - '0';
    vPre[index]++;
  }
  virtual void OnEnumOtherBit(vector<int>& dp, const vector<int>& vPre, char curValue)
  {
    const int index = curValue - '0';
    if (1 == index)
    {
      dp[index] += vPre[0];
    }
    else
    {
      dp[index] += vPre[0] + vPre[1];
    }   
  }
};
class Solution {
public:
  int findIntegers(int n) {
     string strN ;
     while (n > 0)
     {
       strN += ((n & 1) ? "1" : "0");
       n /= 2;
     }
     std::reverse(strN.begin(), strN.end());
    const int len = strN.length();
    int iRet = 0;
    for (int i = 1; i < len; i++)
    {
      CCharLowerUper lu(2);
      lu.Init(("1" + string(i - 1, '0')).c_str(), string(i, '1').c_str(), i);
      iRet += lu.Total(0, 1);
    }
    CCharLowerUper lu(2);
    lu.Init(("1" + string(len - 1, '0')).c_str(), strN.c_str(), len);
    iRet += lu.Total(0, 1);
    return 1 + iRet;
  } 
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
  assert(t1 == t2);
}
template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
  if (v1.size() != v2.size())
  {
    assert(false);
    return;
  }
  for (int i = 0; i < v1.size(); i++)
  {
    Assert(v1[i], v2[i]);
  }
}
int main()
{
  int n;
  {
    Solution sln;
    n = 5;
    auto res = sln.findIntegers(n);
    Assert(5, res);
  }
  {
    Solution sln;
    n = 1;
    auto res = sln.findIntegers(n);
    Assert(2, res);
  }
  {
    Solution sln;
    n = 2;
    auto res = sln.findIntegers(n);
    Assert(3, res);
  }
  {
    Solution sln;
    n = 10;
    auto res = sln.findIntegers(n);
    Assert(8, res);
  }
  {
    Solution sln;
    n = 100;
    auto res = sln.findIntegers(n);
    Assert(34, res);
  }
}

2013年1月版

class Solution {
public:
int findIntegers(int n) {
if (1 == n)
{
return 2;
}
std::vector bits;
int tmp = n;
while (tmp > 0)
{
bits.insert(bits.begin(), tmp % 2);
tmp >>= 1;
}
const int iBitNum = bits.size();
//dp[i][0]表示i位 0结尾的可能数
vector dp(iBitNum, vector(2));//
dp[1][0] = 1;
dp[1][1] = 1;
for (int i = 2; i < dp.size(); i++)
{
dp[i][0] = dp[i - 1][0] + dp[i - 1][1];
dp[i][1] = dp[i - 1][0];
}
int iNum = 0;// dp[iBitNum - 1][0] + dp[iBitNum - 1][1];
int iPreBit = 0;
for (int i = 0; i < iBitNum; i++)
{
const int iCurBit = bits[i];
if (i + 1 == iBitNum)
{
iNum += iCurBit ;
}
else
{
if (1 == iCurBit)
{
iNum += dp[iBitNum - i - 1][0] + dp[iBitNum - i - 1][1];
}
}
if (iCurBit & iPreBit)
{
break;
}
if (i + 1 == iBitNum)
{
iNum++;
}
iPreBit = iCurBit;
}
return iNum;
}
};


扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开发环境: VS2022 **C+

+17**

如无特殊说明,本算法用**C++**实现。

相关文章
|
6月前
|
存储 监控 算法
基于 C++ 哈希表算法实现局域网监控电脑屏幕的数据加速机制研究
企业网络安全与办公管理需求日益复杂的学术语境下,局域网监控电脑屏幕作为保障信息安全、规范员工操作的重要手段,已然成为网络安全领域的关键研究对象。其作用类似网络空间中的 “电子眼”,实时捕获每台电脑屏幕上的操作动态。然而,面对海量监控数据,实现高效数据存储与快速检索,已成为提升监控系统性能的核心挑战。本文聚焦于 C++ 语言中的哈希表算法,深入探究其如何成为局域网监控电脑屏幕数据处理的 “加速引擎”,并通过详尽的代码示例,展现其强大功能与应用价值。
154 2
|
7月前
|
存储 算法 C++
Windows共享文件:探秘C++实现的B树索引算法奇境
在数字化时代,Windows共享文件的高效管理至关重要。B树算法以其自平衡多路搜索特性,在文件索引与存储优化中表现出色。本文探讨B树在Windows共享文件中的应用,通过C++实现具体代码,展示其构建文件索引、优化数据存储的能力,提升文件检索效率。B树通过减少磁盘I/O操作,确保查询高效,为企业和个人提供流畅的文件共享体验。
|
4月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
141 0
|
6月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
179 17
|
5月前
|
存储 机器学习/深度学习 算法
基于 C++ 的局域网访问控制列表(ACL)实现及局域网限制上网软件算法研究
本文探讨局域网限制上网软件中访问控制列表(ACL)的应用,分析其通过规则匹配管理网络资源访问的核心机制。基于C++实现ACL算法原型,展示其灵活性与安全性。文中强调ACL在企业与教育场景下的重要作用,并提出性能优化及结合机器学习等未来研究方向。
147 4
|
5月前
|
机器学习/深度学习 存储 算法
基于 C++ 布隆过滤器算法的局域网上网行为控制:URL 访问过滤的高效实现研究
本文探讨了一种基于布隆过滤器的局域网上网行为控制方法,旨在解决传统黑白名单机制在处理海量URL数据时存储与查询效率低的问题。通过C++实现URL访问过滤功能,实验表明该方法可将内存占用降至传统方案的八分之一,查询速度提升约40%,假阳性率可控。研究为优化企业网络管理提供了新思路,并提出结合机器学习、改进哈希函数及分布式协同等未来优化方向。
154 0
|
7月前
|
存储 监控 算法
基于 C++ 哈希表算法的局域网如何监控电脑技术解析
当代数字化办公与生活环境中,局域网的广泛应用极大地提升了信息交互的效率与便捷性。然而,出于网络安全管理、资源合理分配以及合规性要求等多方面的考量,对局域网内计算机进行有效监控成为一项至关重要的任务。实现局域网内计算机监控,涉及多种数据结构与算法的运用。本文聚焦于 C++ 编程语言中的哈希表算法,深入探讨其在局域网计算机监控场景中的应用,并通过详尽的代码示例进行阐释。
152 4
|
8月前
|
存储 算法 安全
企业员工数据泄露防范策略:基于 C++ 语言的布隆过滤器算法剖析[如何防止员工泄密]
企业运营过程中,防范员工泄密是信息安全领域的核心议题。员工泄密可能致使企业核心数据、商业机密等关键资产的流失,进而给企业造成严重损失。为应对这一挑战,借助恰当的数据结构与算法成为强化信息防护的有效路径。本文专注于 C++ 语言中的布隆过滤器算法,深入探究其在防范员工泄密场景中的应用。
183 8
|
9月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
5月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
154 0

热门文章

最新文章