PAI+Hologres基于大模型搭建企业级知识库

简介: 本文为您介绍如何通过计算巢服务,一键完成Hologres与大规模问答知识库所需的硬件资源与软件资源部署,快速完成企业级问答知识库的搭建。

本文为您介绍如何通过计算巢服务,一键完成Hologres与大规模问答知识库所需的硬件资源与软件资源部署,快速完成企业级问答知识库的搭建。

背景信息

  • Hologres是阿里巴巴自研一站式实时数仓产品,不仅支持海量数据多维分析(OLAP)、高并发低延迟的在线数据服务(Serving),还与达摩院自研高性能向量计算软件库Proxima深度整合,支持高性能、低延时、简单易用的向量计算能力。关于Proxima在Hologres中的应用,请参见Proxima向量计算

  • PAI-EAS是阿里云的模型在线服务平台,支持用户将模型一键部署为在线推理服务或AI-Web应用,可以一键部署LLM推理、AIGC等热门服务应用。PAI-EAS适用于实时推理、近实时异步推理等多种AI推理场景,具备Serverless自动扩缩容和完整运维监控体系能力。详情请参见EAS产品架构

  • LangChain是一个开源框架,可以将大模型、向量数据库、定制语料结合,高效完成专属问答知识库的搭建。Hologres现已被LangChain作为向量数据库集成,详情请参见LangChain-Hologres。

  • 计算巢服务是一个开放给服务商和用户的服务管理PaaS平台,为服务商和用户提供了高效、便捷、安全的服务使用体验,服务商能更好地在阿里云上部署、交付和管理服务,用户能集中管理在阿里云上订阅的各类服务商提供的服务。通过计算巢,可以一键完成问答知识库所需的硬件资源拉起与软件资源部署。计算巢服务详情介绍,请参见什么是计算巢服务
    推荐产品:实时数仓Hologres(原交互式分析)

前提条件

若您使用RAM用户进行知识库搭建,请确认RAM用户已具备相应的权限。需要的权限和授权方式,请参见为用户侧RAM用户(子账号)授权

创建计算巢服务实例

1、访问计算巢服务市场页面,选择Hologres+PAI一键部署企业级问答知识库,并单击正式创建。
2、在创建服务实例页面,配置以下参数。

image.png

3、单击下一步:确认订单,在订单确认页面,确认依赖检查信息和授权信息,然后单击立即创建。

服务实例创建成功之后,在服务实例管理列表查看已创建的服务实例状态。

使用知识库

1、配置并连接知识库。

a、访问服务实例管理页面,单击已部署的实例ID,进入服务实例详情页面。

b、在实例信息区域,单击endpoint,进入Hologres+大模型WebUI。

image.png

c、在Hologres+大模型WebUI的设置页签,配置以下参数。

image.png

  • User:阿里云账号或RAM用户的AccessKey ID。您可以进入AccessKey管理页面获取AccessKey ID。

  • Password:AccessKey ID对应的AccessKey Secret。您可以进入AccessKey管理页面获取AccessKey Secret。

说明
Embedding模型、模型在线服务PAI-EAS连接信息与计算巢部署的Hologres实例的VPC Host、Port、Database(默认为:chatbot)信息已配置,无需修改。

d、单击连接Hologres。

在连接信息中返回连接Hologres成功内容,即说明连接成功。

在上传页签,选择您的专属语料数据文件,然后单击上传。本文以语料示例文件为例。

2、上传完成后在状态区域,返回成功上传 1 个文件 [ example_data.txt, ] ! 内容,即说明上传成功。

image.png

3、在聊天页签,配置问题反馈相关参数。

image.png

4、在提问框中输入您的问题,并单击提交。
image.png

说明
您可以进一步使用PAI-EAS部署的大模型的调用信息,将知识库接入实际业务场景进行使用,例如:接入钉钉聊天群聊,详情请参见使用Hologres和大模型免费定制专属聊天机器人。

相关实践学习
基于Hologres轻量实时的高性能OLAP分析
本教程基于GitHub Archive公开数据集,通过DataWorks将GitHub中的项⽬、行为等20多种事件类型数据实时采集至Hologres进行分析,同时使用DataV内置模板,快速搭建实时可视化数据大屏,从开发者、项⽬、编程语⾔等多个维度了解GitHub实时数据变化情况。
目录
相关文章
|
4月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
883 109
|
4月前
|
存储 人工智能 自然语言处理
RAG:增强大模型知识库的新范式
RAG:增强大模型知识库的新范式
577 99
|
5月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
月之暗面发布开源模型Kimi K2,采用MoE架构,参数达1T,激活参数32B,具备强代码能力及Agent任务处理优势。在编程、工具调用、数学推理测试中表现优异。阿里云PAI-Model Gallery已支持云端部署,提供企业级方案。
351 0
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
|
6月前
|
机器学习/深度学习 人工智能 测试技术
【ICML2025】大模型后训练性能4倍提升!阿里云PAI团队研究成果ChunkFlow中选
近日,阿里云 PAI 团队、通义实验室与中国科学院大学前沿交叉科学学院合作在机器学习顶级会议 ICML 2025 上发表论文 Efficient Long Context Fine-tuning with Chunk Flow。ChunkFlow 作为阿里云在变长和超长序列数据集上高效训练解决方案,针对处理变长和超长序列数据的性能问题,提出了以 Chunk 为中心的训练机制,支撑 Qwen 全系列模型的长序列续训练和微调任务,在阿里云内部的大量的业务上带来2倍以上的端到端性能收益,大大降低了训练消耗的 GPU 卡时。
|
6月前
|
弹性计算 关系型数据库 API
自建Dify平台与PAI EAS LLM大模型
本文介绍了如何使用阿里云计算巢(ECS)一键部署Dify,并在PAI EAS上搭建LLM、Embedding及重排序模型,实现知识库支持的RAG应用。内容涵盖Dify初始化、PAI模型部署、API配置及RAG知识检索设置。
自建Dify平台与PAI EAS LLM大模型
|
6月前
|
机器学习/深度学习 算法 安全
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
本文探讨在敏感数据上应用差分隐私(DP)进行机器学习的挑战与实践。通过模拟DP-SGD算法,在模型训练中注入噪声以保护个人隐私。实验表明,该方法在保持71%准确率和0.79 AUC的同时,具备良好泛化能力,但也带来少数类预测精度下降的问题。研究强调差分隐私应作为模型设计的核心考量,而非事后补救,并提出在参数调优、扰动策略选择和隐私预算管理等方面的优化路径。
457 3
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
|
5月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署gpt-oss系列模型
阿里云 PAI-Model Gallery 已同步接入 gpt-oss 系列模型,提供企业级部署方案。
|
6月前
|
机器学习/深度学习 人工智能 算法
Post-Training on PAI (4):模型微调SFT、DPO、GRPO
阿里云人工智能平台 PAI 提供了完整的模型微调产品能力,支持 监督微调(SFT)、偏好对齐(DPO)、强化学习微调(GRPO) 等业界常用模型微调训练方式。根据客户需求及代码能力层级,分别提供了 PAI-Model Gallery 一键微调、PAI-DSW Notebook 编程微调、PAI-DLC 容器化任务微调的全套产品功能。

热门文章

最新文章