处理Redis与MySQL数据不一致的Java定期巡检方案

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 处理Redis与MySQL数据不一致的Java定期巡检方案

处理Redis与MySQL数据不一致的Java定期巡检方案

背景

假设我们有一个电商秒杀系统,商品库存信息存储在MySQL数据库中,同时使用Redis缓存了库存信息。由于高并发的秒杀场景,可能导致Redis和MySQL中的库存数据不一致。

设计思路

我们的设计思路是创建一个Java定时任务,周期性地检查Redis中的库存与MySQL中的实际库存是否一致。如果发现不一致,可以记录日志或者触发相应的修复机制。

1. Maven依赖

首先,确保在项目的pom.xml文件中添加以下Maven依赖:

<dependencies>
    <!-- MySQL连接驱动 -->
    <dependency>
        <groupId>mysql</groupId>
        <artifactId>mysql-connector-java</artifactId>
        <version>8.0.23</version>
    </dependency>
    <!-- Jedis:Java连接Redis的客户端库 -->
    <dependency>
        <groupId>redis.clients</groupId>
        <artifactId>jedis</artifactId>
        <version>3.7.0</version>
    </dependency>
</dependencies>
2. Java代码实现
import redis.clients.jedis.Jedis;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.Timer;
import java.util.TimerTask;
public class InventoryConsistencyChecker {
    // Redis连接信息
    private static final String REDIS_HOST = "localhost";
    private static final int REDIS_PORT = 6379;
    private static final int REDIS_DB = 0;
    // MySQL连接信息
    private static final String MYSQL_URL = "jdbc:mysql://localhost:3306/ecommerce";
    private static final String MYSQL_USER = "user";
    private static final String MYSQL_PASSWORD = "password";
    public static void main(String[] args) {
        // 创建定时任务
        Timer timer = new Timer();
        timer.schedule(new InventoryCheckerTask(), 0, 30 * 60 * 1000); // 每30分钟执行一次
    }
    static class InventoryCheckerTask extends TimerTask {
        @Override
        public void run() {
            System.out.println("Starting inventory consistency check...");
            try {
                // 连接Redis
                Jedis jedis = new Jedis(REDIS_HOST, REDIS_PORT);
                jedis.select(REDIS_DB);
                // 连接MySQL
                Connection mysqlConnection = DriverManager.getConnection(MYSQL_URL, MYSQL_USER, MYSQL_PASSWORD);
                // 查询所有商品ID
                PreparedStatement preparedStatement = mysqlConnection.prepareStatement("SELECT id FROM products");
                ResultSet resultSet = preparedStatement.executeQuery();
                while (resultSet.next()) {
                    int productId = resultSet.getInt("id");
                    // 从Redis获取缓存库存
                    int redisStock = Integer.parseInt(jedis.get("product:" + productId + ":stock"));
                    // 从MySQL获取实际库存
                    PreparedStatement stockStatement = mysqlConnection.prepareStatement("SELECT stock FROM products WHERE id = ?");
                    stockStatement.setInt(1, productId);
                    ResultSet stockResultSet = stockStatement.executeQuery();
                    int mysqlStock = 0;
                    if (stockResultSet.next()) {
                        mysqlStock = stockResultSet.getInt("stock");
                    }
                    // 检测库存一致性
                    if (redisStock != mysqlStock) {
                        System.out.println("Inventory inconsistency detected for product " + productId +
                                ". Redis: " + redisStock + ", MySQL: " + mysqlStock);
                        // 在这里可以记录日志或者触发修复机制
                        // log.error("Inventory inconsistency detected for product " + productId);
                        // 例如,触发修复机制
                        // repairInventory(productId, redisStock, mysqlStock);
                    }
                }
                // 关闭连接
                jedis.close();
                mysqlConnection.close();
            } catch (SQLException e) {
                System.err.println("Error during inventory consistency check: " + e.getMessage());
            }
        }
    }
}

运行与测试

  1. 将上述代码保存到Java类文件(例如,InventoryConsistencyChecker.java)。
  2. 确保MySQL服务和Redis服务正在运行。
  3. 编译并运行Java程序。
javac InventoryConsistencyChecker.java
java InventoryConsistencyChecker
  1. 观察控制台输出,查看是否检测到Redis与MySQL数据不一致的情况。
相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
23天前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
1月前
|
自然语言处理 Java 关系型数据库
Java|小数据量场景的模糊搜索体验优化
在小数据量场景下,如何优化模糊搜索体验?本文分享一个简单实用的方案,虽然有点“土”,但效果还不错。
32 0
|
1月前
|
关系型数据库 MySQL Linux
在Linux环境下备份Docker中的MySQL数据并传输到其他服务器以实现数据级别的容灾
以上就是在Linux环境下备份Docker中的MySQL数据并传输到其他服务器以实现数据级别的容灾的步骤。这个过程就像是一场接力赛,数据从MySQL数据库中接力棒一样传递到备份文件,再从备份文件传递到其他服务器,最后再传递回MySQL数据库。这样,即使在灾难发生时,我们也可以快速恢复数据,保证业务的正常运行。
120 28
|
6天前
|
存储 SQL 缓存
mysql数据引擎有哪些
MySQL 提供了多种存储引擎,每种引擎都有其独特的特点和适用场景。以下是一些常见的 MySQL 存储引擎及其特点:
24 0
|
2月前
|
前端开发 Cloud Native Java
Java||Springboot读取本地目录的文件和文件结构,读取服务器文档目录数据供前端渲染的API实现
博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
Java||Springboot读取本地目录的文件和文件结构,读取服务器文档目录数据供前端渲染的API实现
|
2月前
|
存储 SQL 关系型数据库
【YashanDB知识库】MySQL迁移至崖山char类型数据自动补空格问题
**简介**:在MySQL迁移到崖山环境时,若字段类型为char(2),而应用存储的数据仅为&#39;0&#39;或&#39;1&#39;,查询时崖山会自动补空格。原因是mysql的sql_mode可能启用了PAD_CHAR_TO_FULL_LENGTH模式,导致保留CHAR类型尾随空格。解决方法是与应用确认数据需求,可将崖山环境中的char类型改为varchar类型以规避补空格问题,适用于所有版本。
|
2月前
|
SQL 关系型数据库 MySQL
【YashanDB知识库】字符集latin1的MySQL中文数据如何迁移到YashanDB
本文探讨了在使用YMP 23.2.1.3迁移MySQL Server字符集为latin1的中文数据至YashanDB时出现乱码的问题。问题根源在于MySQL latin1字符集存放的是实际utf8编码的数据,而YMP尚未支持此类场景。文章提供了两种解决方法:一是通过DBeaver直接迁移表数据;二是将MySQL表数据转换为Insert语句后手动插入YashanDB。同时指出,这两种方法适合单张表迁移,多表迁移可能存在兼容性问题,建议对问题表单独处理。
【YashanDB知识库】字符集latin1的MySQL中文数据如何迁移到YashanDB
|
2月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
1. 先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不⼀致 2. 先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中 这种⽅案能解决1 ⽅案的问题,但是在⾼并发下性能较低,⽽且仍然会出现数据不⼀致的问题,⽐如线程1删除了 Redis缓存数据,正在更新Mysql,此时另外⼀个查询再查询,那么就会把Mysql中⽼数据⼜查到 Redis中 1. 使用MQ异步同步, 保证数据的最终一致性 我们项目中会根据业务情况 , 使用不同的方案来解决Redis和Mysql的一致性问题 : 1. 对于一些一致性要求不高的场景 , 不做处理例如 : 用户行为数据 ,
|
2月前
|
消息中间件 缓存 NoSQL
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
|
3月前
|
存储 监控 Java
【Java并发】【线程池】带你从0-1入门线程池
欢迎来到我的技术博客!我是一名热爱编程的开发者,梦想是编写高端CRUD应用。2025年我正在沉淀中,博客更新速度加快,期待与你一起成长。 线程池是一种复用线程资源的机制,通过预先创建一定数量的线程并管理其生命周期,避免频繁创建/销毁线程带来的性能开销。它解决了线程创建成本高、资源耗尽风险、响应速度慢和任务执行缺乏管理等问题。
249 60
【Java并发】【线程池】带你从0-1入门线程池

热门文章

最新文章