数据结构与算法面试题:给定非负整数 m 和 n,计算不大于 m 的数字中,素数的个数。(提示:算法原理为埃氏筛、线性筛)

简介: 数据结构与算法面试题:给定非负整数 m 和 n,计算不大于 m 的数字中,素数的个数。(提示:算法原理为埃氏筛、线性筛)

数据结构与算法面试题:给定非负整数 m 和 n,计算不大于 m 的数字中,素数的个数。(提示:算法原理为埃氏筛、线性筛)

简介:数据结构与算法面试题:给定非负整数 m 和 n,计算不大于 m 的数字中,素数的个数。(提示:算法原理为埃氏筛、线性筛

算法思路

算法思路:

根据题意,题目需要计算不大于m的素数个数。首先需要判断一个整数是否是素数,然后累加素数个数即可。

最常用的判断素数方法就是试除法,假设要判断n是否为素数,只需要从2到n-1试图去整除它,如果发现有除了1和自身以外的因子,则n不是素数;否则n是素数。但是直接进行此方法所需要的时间复杂度O(n)非常高,无法满足实际需求。而为了尽可能提高效率,可以使用埃氏筛或线性筛来找出素数。

埃氏筛:

从1到m枚举每个数,判断其是否被之前的数筛除,如果没有,则把该数的所有倍数都标记成合数(被筛除)。实现时可以将质数放入容器中,筛掉合数时可以跳过已经筛选过的质数,这样可以提高效率,时间复杂度为O ( n l o g l o g n ) O(nloglogn)O(nloglogn)。

线性筛:

类似埃氏筛,但是在筛时用小质数去筛选合数,剩下没有被筛去的数就是质数。例如第一次会标记2的倍数为合数,第二次会标记3的倍数为合数,以此类推。但是需要注意的是,一个合数可能会被多个质数筛选,因此对于每个数只能被标记一次。时间复杂度为O ( n ) O(n)O(n)。

因为线性筛法效果更好,所以下面给出的是线性筛算法的实现:

#include <iostream>
#include <vector>
using namespace std;
int countPrimes(int n) {
    vector<bool> is_prime(n, true); // 初始化所有数都是质数
    vector<int> primes;             // 存储找到的质数
    for (int i = 2; i < n; ++i) {
        if (is_prime[i]) {         // 如果当前数仍然是质数
            primes.push_back(i);   // 将其加入质数数组
        }
        for (int j = 0; j < primes.size() && i * primes[j] < n; ++j) {
            // 遍历已有的质数进行筛选
            is_prime[i * primes[j]] = false;
            if (i % primes[j] == 0) break; // 当前数的质因子已经被筛选过了
        }
    }
    return primes.size();
}
int main() {
    int n = 10;
    int cnt = countPrimes(n);
    cout << cnt << endl; // 4
    return 0;
}

其中is_prime[i]表示数字i ii是否为质数,初始默认为true。从2开始枚举每个数,如果其是质数,则将其加入质数数组中,并筛掉它的所有合数。具体实现时,在已知当前数是质数的情况下,可以用质数去筛选更大的合数。而为了能够正确并快速地找出合数进行筛选,我们维护一个质数数组,该数组存储已有的所有质数。对于每个数i ii,我们遍历已有的质数,逐一去除掉其倍数。注意到当质因子超过n \sqrt nn时,它的倍数必然小于n nn,所以算法不需要再遍历它的倍数。最后输出质数数目即可。

  • Java版本
import java.util.ArrayList;
import java.util.List;
public class Main {
    public static int countPrimes(int n) {
        boolean[] isPrime = new boolean[n];
        List<Integer> primes = new ArrayList<>();
        for (int i = 2; i < n; ++i) {
            if (!isPrime[i]) {
                primes.add(i);
            }
            for (int j = 0; j < primes.size() && i * primes.get(j) < n; ++j) {
                isPrime[i * primes.get(j)] = true;
                if (i % primes.get(j) == 0) break;
            }
        }
        return primes.size();
    }
    public static void main(String[] args) {
        int n = 10;
        int cnt = countPrimes(n);
        System.out.println(cnt); // 4
    }
}
相关文章
|
4月前
|
负载均衡 NoSQL 算法
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
这篇文章是关于Java面试中Redis相关问题的笔记,包括Redis事务实现、集群方案、主从复制原理、CAP和BASE理论以及负载均衡算法和类型。
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
|
2月前
|
算法 Java 数据库
美团面试:百亿级分片,如何设计基因算法?
40岁老架构师尼恩分享分库分表的基因算法设计,涵盖分片键选择、水平拆分策略及基因法优化查询效率等内容,助力面试者应对大厂技术面试,提高架构设计能力。
美团面试:百亿级分片,如何设计基因算法?
|
2月前
|
算法 前端开发 Java
数据结构与算法学习四:单链表面试题,新浪、腾讯【有难度】、百度面试题
这篇文章总结了单链表的常见面试题,并提供了详细的问题分析、思路分析以及Java代码实现,包括求单链表中有效节点的个数、查找单链表中的倒数第k个节点、单链表的反转以及从尾到头打印单链表等题目。
37 1
数据结构与算法学习四:单链表面试题,新浪、腾讯【有难度】、百度面试题
|
2月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
2月前
|
算法 Java 数据库
美团面试:百亿级分片,如何设计基因算法?
40岁老架构师尼恩在读者群中分享了关于分库分表的基因算法设计,旨在帮助大家应对一线互联网企业的面试题。文章详细介绍了分库分表的背景、分片键的设计目标和建议,以及基因法的具体应用和优缺点。通过系统化的梳理,帮助读者提升架构、设计和开发水平,顺利通过面试。
美团面试:百亿级分片,如何设计基因算法?
|
2月前
|
算法 Java 数据中心
探讨面试常见问题雪花算法、时钟回拨问题,java中优雅的实现方式
【10月更文挑战第2天】在大数据量系统中,分布式ID生成是一个关键问题。为了保证在分布式环境下生成的ID唯一、有序且高效,业界提出了多种解决方案,其中雪花算法(Snowflake Algorithm)是一种广泛应用的分布式ID生成算法。本文将详细介绍雪花算法的原理、实现及其处理时钟回拨问题的方法,并提供Java代码示例。
92 2
|
2月前
|
算法 Java C语言
【数据结构】后缀(逆波兰)表达式的计算以及中缀转后缀的方法
【数据结构】后缀(逆波兰)表达式的计算以及中缀转后缀的方法
53 0
|
3月前
|
机器学习/深度学习 JavaScript 算法
面试中的网红虚拟DOM,你知多少呢?深入解读diff算法
该文章深入探讨了虚拟DOM的概念及其diff算法,解释了虚拟DOM如何最小化实际DOM的更新,以此提升web应用的性能,并详细分析了diff算法的实现机制。
|
4月前
|
人工智能 算法
第一周算法设计与分析:C : 200和整数对之间的情缘
这篇文章介绍了解决算法问题"200和整数对之间的情缘"的方法,通过统计数组中每个数模200的余数,并计算每个同余类中数的组合数来找出所有满足条件的整数对(i, j),使得\( A_i - A_j \)是200的整数倍。
|
4月前
|
消息中间件 存储 算法
这些年背过的面试题——实战算法篇
本文是技术人面试系列实战算法篇,面试中关于实战算法都需要了解哪些内容?一文带你详细了解,欢迎收藏!
下一篇
DataWorks