数据结构与算法面试题:给定非负整数 m 和 n,计算不大于 m 的数字中,素数的个数。(提示:算法原理为埃氏筛、线性筛)

简介: 数据结构与算法面试题:给定非负整数 m 和 n,计算不大于 m 的数字中,素数的个数。(提示:算法原理为埃氏筛、线性筛)

数据结构与算法面试题:给定非负整数 m 和 n,计算不大于 m 的数字中,素数的个数。(提示:算法原理为埃氏筛、线性筛)

简介:数据结构与算法面试题:给定非负整数 m 和 n,计算不大于 m 的数字中,素数的个数。(提示:算法原理为埃氏筛、线性筛

算法思路

算法思路:

根据题意,题目需要计算不大于m的素数个数。首先需要判断一个整数是否是素数,然后累加素数个数即可。

最常用的判断素数方法就是试除法,假设要判断n是否为素数,只需要从2到n-1试图去整除它,如果发现有除了1和自身以外的因子,则n不是素数;否则n是素数。但是直接进行此方法所需要的时间复杂度O(n)非常高,无法满足实际需求。而为了尽可能提高效率,可以使用埃氏筛或线性筛来找出素数。

埃氏筛:

从1到m枚举每个数,判断其是否被之前的数筛除,如果没有,则把该数的所有倍数都标记成合数(被筛除)。实现时可以将质数放入容器中,筛掉合数时可以跳过已经筛选过的质数,这样可以提高效率,时间复杂度为O ( n l o g l o g n ) O(nloglogn)O(nloglogn)。

线性筛:

类似埃氏筛,但是在筛时用小质数去筛选合数,剩下没有被筛去的数就是质数。例如第一次会标记2的倍数为合数,第二次会标记3的倍数为合数,以此类推。但是需要注意的是,一个合数可能会被多个质数筛选,因此对于每个数只能被标记一次。时间复杂度为O ( n ) O(n)O(n)。

因为线性筛法效果更好,所以下面给出的是线性筛算法的实现:

#include <iostream>
#include <vector>
using namespace std;
int countPrimes(int n) {
    vector<bool> is_prime(n, true); // 初始化所有数都是质数
    vector<int> primes;             // 存储找到的质数
    for (int i = 2; i < n; ++i) {
        if (is_prime[i]) {         // 如果当前数仍然是质数
            primes.push_back(i);   // 将其加入质数数组
        }
        for (int j = 0; j < primes.size() && i * primes[j] < n; ++j) {
            // 遍历已有的质数进行筛选
            is_prime[i * primes[j]] = false;
            if (i % primes[j] == 0) break; // 当前数的质因子已经被筛选过了
        }
    }
    return primes.size();
}
int main() {
    int n = 10;
    int cnt = countPrimes(n);
    cout << cnt << endl; // 4
    return 0;
}

其中is_prime[i]表示数字i ii是否为质数,初始默认为true。从2开始枚举每个数,如果其是质数,则将其加入质数数组中,并筛掉它的所有合数。具体实现时,在已知当前数是质数的情况下,可以用质数去筛选更大的合数。而为了能够正确并快速地找出合数进行筛选,我们维护一个质数数组,该数组存储已有的所有质数。对于每个数i ii,我们遍历已有的质数,逐一去除掉其倍数。注意到当质因子超过n \sqrt nn时,它的倍数必然小于n nn,所以算法不需要再遍历它的倍数。最后输出质数数目即可。

  • Java版本
import java.util.ArrayList;
import java.util.List;
public class Main {
    public static int countPrimes(int n) {
        boolean[] isPrime = new boolean[n];
        List<Integer> primes = new ArrayList<>();
        for (int i = 2; i < n; ++i) {
            if (!isPrime[i]) {
                primes.add(i);
            }
            for (int j = 0; j < primes.size() && i * primes.get(j) < n; ++j) {
                isPrime[i * primes.get(j)] = true;
                if (i % primes.get(j) == 0) break;
            }
        }
        return primes.size();
    }
    public static void main(String[] args) {
        int n = 10;
        int cnt = countPrimes(n);
        System.out.println(cnt); // 4
    }
}
相关文章
|
2月前
|
算法 机器人
基于SOA海鸥优化算法的PID控制器最优控制参数计算matlab仿真
本课题研究基于海鸥优化算法(SOA)优化PID控制器参数的方法,通过MATLAB仿真对比传统PID控制效果。利用SOA算法优化PID的kp、ki、kd参数,以积分绝对误差(IAE)为适应度函数,提升系统响应速度与稳定性。仿真结果表明,SOA优化的PID控制器在阶跃响应和误差控制方面均优于传统方法,具有更快的收敛速度和更强的全局寻优能力,适用于复杂系统的参数整定。
|
6月前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
4月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
149 1
|
4月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
144 0
|
8月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
272 10
 算法系列之数据结构-二叉树
|
8月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
224 3
 算法系列之数据结构-Huffman树
|
8月前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
326 22
|
8月前
|
算法 数据安全/隐私保护
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。
204 14
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?

热门文章

最新文章