Python实战演练之python实现神经网络模型算法

简介: Python实战演练之python实现神经网络模型算法

python实现神经网络模型算法

 

 

今天,厾罗和大家分享用Python实现神经网络模型算法,仅用于技术学习交流。

 

实现技巧

 

1.导入依赖库

主要是安装相关的依赖库。本文实现的环境为:python 3.7。

from __future__ import division    
import math      
import random    
import pandas as pd

2.构建BP神经网络类

主要是构建三层反向传播神经网络类。

""" 三层反向传播神经网络 """
class NN:
    def __init__(self, ni, nh, no):
        self.ni = ni + 1                            # 输入层节点
        self.nh = nh + 1                    # 隐藏层节点
        self.no = no                      # 输出层种类
        self.ai = [1.0] * self.ni    
        self.ah = [1.0] * self.nh    
        self.ao = [1.0] * self.no    
        self.wi = self.makeMatrix(self.ni, self.nh)  # 输出层到隐藏层的映射矩阵
        self.wo = self.makeMatrix(self.nh, self.no)  # 隐藏层到输出层的映射矩阵
        for i in range(self.ni):          
            for j in range(self.nh):    
                self.wi[i][j] = self.rand(-0.2, 0.2)  
        for j in range(self.nh):
            for k in range(self.no):
                self.wo[j][k] = self.rand(-2, 2)  
    #前向传播,激活神经网络的所有节点
    def update(self, inputs):
        if len(inputs) != self.ni - 1:
            print(len(inputs),self.ni - 1)
            raise ValueError('与输入层节点数不符!')    
        for i in range(self.ni - 1):    
            self.ai[i] = inputs[i]    
        for j in range(self.nh):                  # self.nh表示隐藏层的节点数
            sum = 0.0                            # 激活项a = g(z)  z = Θ^T x ;sum相当于z,每次循环归零
            for i in range(self.ni):                  #通过循环z = Θ^T x ,因为Θ、x均为向量
                sum = sum + self.ai[i] * self.wi[i][j]  #〖 Z〗^((2))=Θ^((1)) a^((1))
            self.ah[j] = self.sigmoid(sum)    # a^((2))=g(z^((2))),这里使用sigmoid()函数作为激活函数
        for k in range(self.no):
            sum = 0.0
            for j in range(self.nh):
                sum = sum + self.ah[j] * self.wo[j][k]  #〖 Z〗^((3))=Θ^((2)) a^((2))
            self.ao[k] = self.sigmoid(sum)    # a^((3))=g(z^((3)))
        return self.ao[:]
    #反向传播,计算节点激活项的误差
    def backPropagate(self, targets, lr):               # targets为某样本实际种类分类,lr为梯度下降算法的学习率
        output_deltas = [0.0] * self.no
        for k in range(self.no):
            error = targets[k] - np.round_(self.ao[k])
            output_deltas[k] = self.dsigmoid(self.ao[k]) * error
        # 计算隐藏层的误差
        hidden_deltas = [0.0] * self.nh    
        for j in range(self.nh):
            error = 0.0
            for k in range(self.no):
                error = error + output_deltas[k] * self.wo[j][k]    
            hidden_deltas[j] = self.dsigmoid(self.ah[j]) * error
        # 更新输出层权重
        for j in range(self.nh):            # 反向传播算法,求出每个节点的误差后,反向更新权重
            for k in range(self.no):
                change = output_deltas[k] * self.ah[j]    
                self.wo[j][k] = self.wo[j][k] + lr * change   
        # 更新输入层权重
        for i in range(self.ni):                    
            for j in range(self.nh):
                change = hidden_deltas[j] * self.ai[i]
                self.wi[i][j] = self.wi[i][j] + lr * change
        # 计算误差
        error = 0.0
        for k in range(self.no):                                    
            error += 0.5 * (targets[k] - np.round_(self.ao[k])) ** 2  
        return error                                          
    #用测试集输出准确率
    def test(self, patterns):                            
        count = 0
        num=0
        for p in patterns:
            target = p[1]
            result = self.update(p[0])                    
            print(p[0], ':', target, '->', np.round_(result))
            num=0
            for k in range(self.no):
                if (target[k] == np.round_(result[k])):
                    num +=1
            print(num)
            if num==3:
                count +=1
            print("******************",(target) == (np.round_(result)),"******************")
            accuracy = int(float(count / len(patterns))*100)
        print('accuracy: %-.9f' % accuracy,"%")      
    #输出训练过后神经网络的权重矩阵
    def weights(self):
        print('输入层权重:')
        for i in range(self.ni):
            print(self.wi[i])
        print()
        print('输出层权重:')
        for j in range(self.nh):
            print(self.wo[j])
    #用训练集训练神经网络
    def train(self, patterns, iterations=1000, lr=0.1):  
        for i in range(iterations):
            error = 0.0                    
            for p in patterns:            
                inputs = p[0]            
                targets = p[1]            
                self.update(inputs)          
                error = error + self.backPropagate(targets, lr)  
            if i % 100 == 0:
                print("percent:",int(i/iterations*100),"%",'   error: %-.9f' % error)
    #生成区间[a, b)内的随机数
    def rand(self, a, b):    
        return (b - a) * random.random() + a    
    # 生成大小 I*J 的矩阵,默认零矩阵
    def makeMatrix(self, I, J, fill=0.0):    
        m = []    
        for i in range(I):    
            m.append([fill] * J)    
        return m   
    # 函数 sigmoid,bp神经网络前向传播的激活函数
    def sigmoid(self, x):
        return 1.0 / (1.0 + math.exp(-x))       
    # 函数 sigmoid 的导数,反向传播时使用
    def dsigmoid(self, x):
        return x * (1 - x)

3.读取数据并进行预处理

主要是读取构建分类模型的数据,并进行预处理。

data = []                            
    raw = pd.read_csv('iris.csv')    
    raw_data = raw.values            
    raw_feature = raw_data[1:, 1:5]    
    for i in range(len(raw_feature)):          
        ele = []                    
        ele.append(list(raw_feature[i]))  
        if raw_data[i][5] == 0:   
            ele.append([0, 0,1])    
        elif raw_data[i][5] == 1:
            ele.append([0,1, 0])
        elif raw_data[i][5] == 2:
            ele.append([1, 1,1])
        else:
            ele.append([0, 0,0])
        data.append(ele)

4.利用构建的BP神经网络预测类,创建神经网络模型

主要是用BP神经网络预测类创建神经网络类模型。

nn = NN(4, 10, 3)

5.BP分类模型训练及预测

主要是划分训练集和测试集,并进行BP分类模型训练和预测。

training = data[1:100]            
    test = data[101:]            
    nn.train(training, iterations=1000)  
    nn.test(test)

完整源代码

from __future__ import division    
import math      
import random    
import pandas as pd    
import numpy as np
""" 三层反向传播神经网络 """
class NN:
    def __init__(self, ni, nh, no):
        self.ni = ni + 1                            # 输入层节点
        self.nh = nh + 1                    # 隐藏层节点
        self.no = no                      # 输出层种类
        self.ai = [1.0] * self.ni    
        self.ah = [1.0] * self.nh    
        self.ao = [1.0] * self.no    
        self.wi = self.makeMatrix(self.ni, self.nh)  # 输出层到隐藏层的映射矩阵
        self.wo = self.makeMatrix(self.nh, self.no)  # 隐藏层到输出层的映射矩阵
        for i in range(self.ni):          
            for j in range(self.nh):    
                self.wi[i][j] = self.rand(-0.2, 0.2)  
        for j in range(self.nh):
            for k in range(self.no):
                self.wo[j][k] = self.rand(-2, 2)  
    #前向传播,激活神经网络的所有节点
    def update(self, inputs):
        if len(inputs) != self.ni - 1:
            print(len(inputs),self.ni - 1)
            raise ValueError('与输入层节点数不符!')    
        for i in range(self.ni - 1):    
            self.ai[i] = inputs[i]    
        for j in range(self.nh):                  # self.nh表示隐藏层的节点数
            sum = 0.0                            # 激活项a = g(z)  z = Θ^T x ;sum相当于z,每次循环归零
            for i in range(self.ni):                  #通过循环z = Θ^T x ,因为Θ、x均为向量
                sum = sum + self.ai[i] * self.wi[i][j]  #〖 Z〗^((2))=Θ^((1)) a^((1))
            self.ah[j] = self.sigmoid(sum)    # a^((2))=g(z^((2))),这里使用sigmoid()函数作为激活函数
        for k in range(self.no):
            sum = 0.0
            for j in range(self.nh):
                sum = sum + self.ah[j] * self.wo[j][k]  #〖 Z〗^((3))=Θ^((2)) a^((2))
            self.ao[k] = self.sigmoid(sum)    # a^((3))=g(z^((3)))
        return self.ao[:]
    #反向传播,计算节点激活项的误差
    def backPropagate(self, targets, lr):               # targets为某样本实际种类分类,lr为梯度下降算法的学习率
        output_deltas = [0.0] * self.no
        for k in range(self.no):
            error = targets[k] - np.round_(self.ao[k])
            output_deltas[k] = self.dsigmoid(self.ao[k]) * error
        # 计算隐藏层的误差
        hidden_deltas = [0.0] * self.nh    
        for j in range(self.nh):
            error = 0.0
            for k in range(self.no):
                error = error + output_deltas[k] * self.wo[j][k]    
            hidden_deltas[j] = self.dsigmoid(self.ah[j]) * error
        # 更新输出层权重
        for j in range(self.nh):            # 反向传播算法,求出每个节点的误差后,反向更新权重
            for k in range(self.no):
                change = output_deltas[k] * self.ah[j]    
                self.wo[j][k] = self.wo[j][k] + lr * change   
        # 更新输入层权重
        for i in range(self.ni):                    
            for j in range(self.nh):
                change = hidden_deltas[j] * self.ai[i]
                self.wi[i][j] = self.wi[i][j] + lr * change
        # 计算误差
        error = 0.0
        for k in range(self.no):                                    
            error += 0.5 * (targets[k] - np.round_(self.ao[k])) ** 2  
        return error                                          
    #用测试集输出准确率
    def test(self, patterns):                            
        count = 0
        num=0
        for p in patterns:
            target = p[1]
            result = self.update(p[0])                    
            print(p[0], ':', target, '->', np.round_(result))
            num=0
            for k in range(self.no):
                if (target[k] == np.round_(result[k])):
                    num +=1
            print(num)
            if num==3:
                count +=1
            print("******************",(target) == (np.round_(result)),"******************")
            accuracy = int(float(count / len(patterns))*100)
        print('accuracy: %-.9f' % accuracy,"%")      
    #输出训练过后神经网络的权重矩阵
    def weights(self):
        print('输入层权重:')
        for i in range(self.ni):
            print(self.wi[i])
        print()
        print('输出层权重:')
        for j in range(self.nh):
            print(self.wo[j])
    #用训练集训练神经网络
    def train(self, patterns, iterations=1000, lr=0.1):  
        for i in range(iterations):
            error = 0.0                    
            for p in patterns:            
                inputs = p[0]            
                targets = p[1]            
                self.update(inputs)          
                error = error + self.backPropagate(targets, lr)  
            if i % 100 == 0:
                print("percent:",int(i/iterations*100),"%",'   error: %-.9f' % error)
    #生成区间[a, b)内的随机数
    def rand(self, a, b):    
        return (b - a) * random.random() + a    
    # 生成大小 I*J 的矩阵,默认零矩阵
    def makeMatrix(self, I, J, fill=0.0):    
        m = []    
        for i in range(I):    
            m.append([fill] * J)    
        return m   
    # 函数 sigmoid,bp神经网络前向传播的激活函数
    def sigmoid(self, x):
        return 1.0 / (1.0 + math.exp(-x))       
    # 函数 sigmoid 的导数,反向传播时使用
    def dsigmoid(self, x):
        return x * (1 - x)
if __name__ == '__main__':
    data = []                            
    raw = pd.read_csv('iris.csv')    
    raw_data = raw.values            
    raw_feature = raw_data[1:, 1:5]    
    for i in range(len(raw_feature)):          
        ele = []                    
        ele.append(list(raw_feature[i]))  
        if raw_data[i][5] == 0:   
            ele.append([0, 0,1])    
        elif raw_data[i][5] == 1:
            ele.append([0,1, 0])
        elif raw_data[i][5] == 2:
            ele.append([1, 1,1])
        else:
            ele.append([0, 0,0])
        data.append(ele)
    nn = NN(4, 10, 3)  
    training = data[1:100]            
    test = data[101:]            
    nn.train(training, iterations=1000)  
    nn.test(test)

 

相关文章
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
174 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
1月前
|
小程序 开发者 Python
探索Python编程:从基础到实战
本文将引导你走进Python编程的世界,从基础语法开始,逐步深入到实战项目。我们将一起探讨如何在编程中发挥创意,解决问题,并分享一些实用的技巧和心得。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考。让我们一起开启Python编程的探索之旅吧!
50 10
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
82 3
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
84 8
|
2月前
|
算法 Unix 数据库
Python编程入门:从基础到实战
本篇文章将带你进入Python编程的奇妙世界。我们将从最基础的概念开始,逐步深入,最后通过一个实际的项目案例,让你真正体验到Python编程的乐趣和实用性。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。让我们一起探索Python的世界吧!
|
2月前
|
数据处理 Python
探索Python中的异步编程:从基础到实战
在Python的世界中,“速度”不仅是赛车手的追求。本文将带你领略Python异步编程的魅力,从原理到实践,我们不单单是看代码,更通过实例感受它的威力。你将学会如何用更少的服务器资源做更多的事,就像是在厨房里同时烹饪多道菜而不让任何一道烧焦。准备好了吗?让我们开始这场技术烹饪之旅。
|
5天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
6天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
6天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。