Mysql系列-2.Mysql索引优化(上)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: Mysql系列-2.Mysql索引优化

索引


索引概述


介绍


索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。


演示


表结构及其数据如下:

假如我们要执行的SQL语句为 : select * from user where age = 45;


1). 无索引情况

在无索引情况下,就需要从第一行开始扫描,一直扫描到最后一行,我们称之为 全表扫描,性能很低。


2). 有索引情况


如果我们针对于这张表建立了索引,假设索引结构就是二叉树,那么也就意味着,会对age这个字段建立一个二叉树的索引结构。

此时我们在进行查询时,只需要扫描三次就可以找到数据了,极大的提高的查询的效率。


特点


优势 劣势
提高数据检索的效率,降低数据库的IO成本 索引列也是要占用空间的。
通过索引列对数据进行排序,降低数据排序的成本,降低CPU的消耗。 索引大大提高了查询效率,同时却也降低更新表的速度,如对表进行INSERT、UPDATE、DELETE时,效率降低。


索引结构


概述


MySQL的索引是在存储引擎层实现的,不同的存储引擎有不同的索引结构,主要包含以下几种:

索引结构 描述
B+Tree索引 最常见的索引类型,大部分引擎都支持 B+ 树索引
Hash索引 底层数据结构是用哈希表实现的, 只有精确匹配索引列的查询才有效, 不支持范围查询


二叉树


假如说MySQL的索引结构采用二叉树的数据结构,比较理想的结构如下:

如果主键是顺序插入的,则会形成一个单向链表,结构如下:

所以,如果选择二叉树作为索引结构,会存在以下缺点:


  • 顺序插入时,会形成一个链表,查询性能大大降低。
  • 大数据量情况下,层级较深,检索速度慢。


此时大家可能会想到,我们可以选择红黑树,红黑树是一颗自平衡二叉树,那这样即使是顺序插入数据,最终形成的数据结构也是一颗平衡的二叉树,结构如下:

但是,即使如此,由于红黑树也是一颗二叉树,所以也会存在一个缺点:


  • 大数据量情况下,层级较深,检索速度慢。


所以,在MySQL的索引结构中,并没有选择二叉树或者红黑树,而选择的是B+Tree,那么什么是B+Tree呢?在详解B+Tree之前,先来介绍一个B-Tree。


B-Tree


B-Tree,B树是一种多叉路衡查找树,相对于二叉树,B树每个节点可以有多个分支,即多叉。


以一颗最大度数(max-degree)为5(5阶)的b-tree为例,那这个B树每个节点最多存储4个key,5个指针:

以一个简单的例子来演示一下:

插入一组数据: 100 65 169 368 900 556 780 35 215 1200 234 888 158 90 1000 88 120 268 250 。然后观察一些数据插入过程中,节点的变化情况。

特点:


  • 5阶的B树,每一个节点最多存储4个key,对应5个指针。
  • 一旦节点存储的key数量到达5,就会裂变,中间元素向上分裂。
  • 在B树中,非叶子节点和叶子节点都会存放数据。


B+Tree


B+Tree是B-Tree的变种,我们以一颗最大度数(max-degree)为4(4阶)的b+tree为例,来看一下其结构示意图:

我们可以看到,两部分:


  • 绿色框框起来的部分,是索引部分,仅仅起到索引数据的作用,不存储数据。
  • 红色框框起来的部分,是数据存储部分,在其叶子节点中要存储具体的数据。


以一个简单的例子来演示一下:


插入一组数据: 100 65 169 368 900 556 780 35 215 1200 234 888 158 90 1000 88 120 268 250 。然后观察一些数据插入过程中,节点的变化情况。

最终我们看到,B+Tree 与 B-Tree相比,主要有以下三点区别:


  • 所有的数据都会出现在叶子节点。
  • 叶子节点形成一个单向链表。
  • 非叶子节点仅仅起到索引数据作用,具体的数据都是在叶子节点存放的。


上述我们所看到的结构是标准的B+Tree的数据结构,接下来,我们再来看看MySQL中优化之后的B+Tree。


MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能,利于排序。


Hash


MySQL中除了支持B+Tree索引,还支持一种索引类型—Hash索引。


1). 结构


哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。

如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可以通过链表来解决。

2). 特点


  • Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,< ,…)
  • 无法利用索引完成排序操作
  • 查询效率高,通常(不存在hash冲突的情况)只需要一次检索就可以了,效率通常要高于B+tree索引


3). 存储引擎支持


在MySQL中,支持hash索引的是Memory存储引擎。 而InnoDB中具有自适应hash功能,hash索引是InnoDB存储引擎根据B+Tree索引在指定条件下自动构建的。


思考题:


为什么InnoDB存储引擎选择使用B+tree索引结构?


  • 相对于二叉树,层级更少,搜索效率高;
  • 对于B-tree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的键值减少,指针跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低;
  • 相对Hash索引,B+tree支持范围匹配及排序操作;


索引分类


索引分类


在MySQL数据库,将索引的具体类型主要分为以下几类:主键索引、唯一索引、常规索引、全文索引。

分类 含义 特点 关键字
主键索引 针对于表中主键创建的索引 默认自动创建, 只能有一个 PRIMARY
唯一索引 避免同一个表中某数据列中的值重复 可以有多个 UNIQUE
常规索引 快速定位特定数据 可以有多个
全文索引 全文索引查找的是文本中的关键词,而不是比较索引中的值 可以有多个 FULLTEXT


聚集索引&二级索引


而在在InnoDB存储引擎中,根据索引的存储形式,又可以分为以下两种:

分类 含义 特点
聚集索引(Clustered Index) 将数据存储与索引放到了一块,索引结构的叶子节点保存了行数据 必须有,而且只有一个
二级索引(Secondary Index) 将数据与索引分开存储,索引结构的叶子节点关联的是对应的主键 可以存在多个

聚集索引选取规则:


  • 如果存在主键,主键索引就是聚集索引。
  • 如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。
  • 如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索引。


聚集索引和二级索引的具体结构如下:

  • 聚集索引的叶子节点下挂的是这一行的数据 。
  • 二级索引的叶子节点下挂的是该字段值对应的主键值。


接下来,我们来分析一下,当我们执行如下的SQL语句时,具体的查找过程是什么样子的。

具体过程如下:


①. 由于是根据name字段进行查询,所以先根据name='Arm’到name字段的二级索引中进行匹配查找。但是在二级索引中只能查找到 Arm 对应的主键值 10。


②. 由于查询返回的数据是*,所以此时,还需要根据主键值10,到聚集索引中查找10对应的记录,最终找到10对应的行row。


③. 最终拿到这一行的数据,直接返回即可。


回表查询: 这种先到二级索引中查找数据,找到主键值,然后再到聚集索引中根据主键值,获取数据的方式,就称之为回表查询。


思考题:


以下两条SQL语句,那个执行效率高? 为什么?


A. select * from user where id = 10 ;

B. select * from user where name = ‘Arm’ ;


备注: id为主键,name字段创建的有索引;


解答:


A 语句的执行性能要高于B 语句。


因为A语句直接走聚集索引,直接返回数据。 而B语句需要先查询name字段的二级索引,然后再查询聚集索引,也就是需要进行回表查询。


思考题:


InnoDB主键索引的B+tree高度为多高呢?

假设:


一行数据大小为1k,一页中可以存储16行这样的数据。InnoDB的指针占用6个字节的空间,主键即使为bigint,占用字节数为8。


高度为2:


n * 8 + (n + 1) * 6 = 16*1024(1k = 1024字节数) , 算出n约为 1170


1171* 16 = 18736


也就是说,如果树的高度为2,则可以存储 18000 多条记录。


高度为3:


1171 * 1171 * 16 = 21939856


也就是说,如果树的高度为3,则可以存储 2200w 左右的记录。


Mysql系列-2.Mysql索引优化(中):https://developer.aliyun.com/article/1414505


相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
3天前
|
SQL 关系型数据库 MySQL
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
MySQL慢查询优化、索引优化,是必知必备,大厂面试高频,本文深入详解,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
|
24天前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
7天前
|
SQL 关系型数据库 MySQL
MySQL慢查询优化、索引优化、以及表等优化详解
本文详细介绍了MySQL优化方案,包括索引优化、SQL慢查询优化和数据库表优化,帮助提升数据库性能。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
MySQL慢查询优化、索引优化、以及表等优化详解
|
11天前
|
缓存 监控 关系型数据库
如何优化MySQL查询速度?
如何优化MySQL查询速度?【10月更文挑战第31天】
37 3
|
14天前
|
缓存 关系型数据库 MySQL
如何优化 MySQL 数据库的性能?
【10月更文挑战第28天】
37 1
|
21天前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:百万级数据统计优化实践
【10月更文挑战第21天】 在处理大规模数据集时,传统的单体数据库解决方案往往力不从心。MySQL和Redis的组合提供了一种高效的解决方案,通过将数据库操作与高速缓存相结合,可以显著提升数据处理的性能。本文将分享一次实际的优化案例,探讨如何利用MySQL和Redis共同实现百万级数据统计的优化。
54 9
|
15天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
77 1
|
21天前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:优化百万数据查询的实战经验
【10月更文挑战第13天】 在处理大规模数据集时,传统的关系型数据库如MySQL可能会遇到性能瓶颈。为了提升数据处理的效率,我们可以结合使用MySQL和Redis,利用两者的优势来优化数据查询。本文将分享一次实战经验,探讨如何通过MySQL与Redis的协同工作来优化百万级数据统计。
48 5
|
26天前
|
存储 关系型数据库 MySQL
如何在MySQL中进行索引的创建和管理?
【10月更文挑战第16天】如何在MySQL中进行索引的创建和管理?
54 1
|
26天前
|
存储 关系型数据库 MySQL
优化 MySQL 的锁机制以提高并发性能
【10月更文挑战第16天】优化 MySQL 锁机制需要综合考虑多个因素,根据具体的应用场景和需求进行针对性的调整。通过不断地优化和改进,可以提高数据库的并发性能,提升系统的整体效率。
47 1