剑指JUC原理-16.读写锁(上):https://developer.aliyun.com/article/1413658
t3 r.lock,t4 w.lock
这种状态下,假设又有 t3 加读锁和 t4 加写锁,这期间 t1 仍然持有锁,就变成了下面的样子
t2 t3都是读锁,所以状态都是 SHARED,而t4是写锁,所以状态是EXCLUSIVE
t1 w.unlock
这时会走到写锁的 sync.release(1) 流程,调用 sync.tryRelease(1) 成功,变成下面的样子
public void unlock() { sync.release(1); } public final boolean release(int arg) { // 如果return true呢,就会执行后续的逻辑 if (tryRelease(arg)) { Node h = head; if (h != null && h.waitStatus != 0) unparkSuccessor(h); return true; } return false; } protected final boolean tryRelease(int releases) { if (!isHeldExclusively()) throw new IllegalMonitorStateException(); // 首先在原来的基础上减1 int nextc = getState() - releases; // 然后去查看写锁部分是不是减成0了 boolean free = exclusiveCount(nextc) == 0; if (free) setExclusiveOwnerThread(null); // 如果没有减成0 代表着这事一次锁的重入 setState(nextc); return free; }
接下来执行唤醒流程 sync.unparkSuccessor,即让老二恢复运行,这时 t2 在 doAcquireShared 内
parkAndCheckInterrupt() 处恢复运行
这回再来一次 for (;😉 执行 tryAcquireShared 成功则让读锁计数加一
private void doAcquireShared(int arg) { final Node node = addWaiter(Node.SHARED); boolean failed = true; try { boolean interrupted = false; for (;;) { final Node p = node.predecessor(); if (p == head) { int r = tryAcquireShared(arg); if (r >= 0) { // 此时进入到这个条件中 // 替换头结点 setHeadAndPropagate(node, r); p.next = null; // help GC if (interrupted) selfInterrupt(); failed = false; return; } } if (shouldParkAfterFailedAcquire(p, node) && // 此时这里唤醒了,就可以继续运行了,然后再循环 parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } } // 返回-1表示失败,返回0或者1表示成功 protected final int tryAcquireShared(int unused) { Thread current = Thread.currentThread(); int c = getState(); // 返回-1的之前分析过了,就不再做分析了 if (exclusiveCount(c) != 0 && getExclusiveOwnerThread() != current) return -1; // 获取读锁,也就是高16位 int r = sharedCount(c); // 不应该被阻塞住 if (!readerShouldBlock() && // 没有超过最大基数 r < MAX_COUNT && // 对于高位来讲,不是加1,是加了65536 compareAndSetState(c, c + SHARED_UNIT)) { // 如果都符合,代表后续读锁加锁成功了 if (r == 0) { firstReader = current; firstReaderHoldCount = 1; } else if (firstReader == current) { firstReaderHoldCount++; } else { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) cachedHoldCounter = rh = readHolds.get(); else if (rh.count == 0) readHolds.set(rh); rh.count++; } return 1; } return fullTryAcquireShared(current); }
这时 t2 已经恢复运行,接下来 t2 调用 setHeadAndPropagate(node, 1),它原本所在节点被置为头节点
// 替换头结点 private void setHeadAndPropagate(Node node, int propagate) { Node h = head; // Record old head for check below setHead(node); if (propagate > 0 || h == null || h.waitStatus < 0 || (h = head) == null || h.waitStatus < 0) { // 拿到当前节点的下一个 Node s = node.next; // 如果节点的状态是 shared的话, if (s == null || s.isShared()) doReleaseShared(); } }
事情还没完,在 setHeadAndPropagate 方法内还会检查下一个节点是否是 shared,如果是则调用
doReleaseShared() 将 head 的状态从 -1 改为 0 并唤醒老二,这时 t3 在 doAcquireShared 内parkAndCheckInterrupt() 处恢复运行
private void doReleaseShared() { for (;;) { Node h = head; if (h != null && h != tail) { int ws = h.waitStatus; if (ws == Node.SIGNAL) { // 在这里会将节点的状态从 -1 改成 0 if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0)) continue; // loop to recheck cases // 对头结点的后继结点又要去唤醒,这就接上了 此时就唤醒t3的park unparkSuccessor(h); } else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE)) continue; // loop on failed CAS } if (h == head) // loop if head changed break; } }
private void doAcquireShared(int arg) { final Node node = addWaiter(Node.SHARED); boolean failed = true; try { boolean interrupted = false; for (;;) { final Node p = node.predecessor(); if (p == head) { // 又再次来到了 tryAcquireShared方法,和前面的流程是一样的 int r = tryAcquireShared(arg); if (r >= 0) { setHeadAndPropagate(node, r); p.next = null; // help GC if (interrupted) selfInterrupt(); failed = false; return; } } if (shouldParkAfterFailedAcquire(p, node) && // 此时t3 被唤醒了,和之前的流程是一样的 parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } } protected final int tryAcquireShared(int unused) { Thread current = Thread.currentThread(); int c = getState(); // 返回-1的之前分析过了,就不再做分析了 if (exclusiveCount(c) != 0 && getExclusiveOwnerThread() != current) return -1; // 获取读锁,也就是高16位 int r = sharedCount(c); // 不应该被阻塞住 if (!readerShouldBlock() && // 没有超过最大基数 r < MAX_COUNT && // 对于高位来讲,不是加1,是加了65536 compareAndSetState(c, c + SHARED_UNIT)) { // 如果都符合,代表后续读锁加锁成功了 if (r == 0) { firstReader = current; firstReaderHoldCount = 1; } else if (firstReader == current) { firstReaderHoldCount++; } else { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) cachedHoldCounter = rh = readHolds.get(); else if (rh.count == 0) readHolds.set(rh); rh.count++; } return 1; } return fullTryAcquireShared(current); }
这回再来一次 for (;😉 执行 tryAcquireShared 成功则让读锁计数加一
这时 t3 已经恢复运行,接下来 t3 调用 setHeadAndPropagate(node, 1),它原本所在节点被置为头节点
// 替换头结点 private void setHeadAndPropagate(Node node, int propagate) { Node h = head; // Record old head for check below setHead(node); if (propagate > 0 || h == null || h.waitStatus < 0 || (h = head) == null || h.waitStatus < 0) { // 拿到当前节点的下一个 Node s = node.next; // 如果节点的状态是 shared的话, if (s == null || s.isShared()) doReleaseShared(); } }
下一个节点不是 shared 了,因此不会继续唤醒 t4 所在节点
t2 r.unlock,t3 r.unlock
t2 进入 sync.releaseShared(1) 中,调用 tryReleaseShared(1) 让计数减一,但由于计数还不为零
public void unlock() { sync.releaseShared(1); } public final boolean releaseShared(int arg) { if (tryReleaseShared(arg)) { doReleaseShared(); return true; } return false; } protected final boolean tryReleaseShared(int unused) { Thread current = Thread.currentThread(); if (firstReader == current) { // assert firstReaderHoldCount > 0; if (firstReaderHoldCount == 1) firstReader = null; else firstReaderHoldCount--; } else { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) rh = readHolds.get(); int count = rh.count; if (count <= 1) { readHolds.remove(); if (count <= 0) throw unmatchedUnlockException(); } --rh.count; } for (;;) { int c = getState(); // 获取状态,减去高位的1 int nextc = c - SHARED_UNIT; if (compareAndSetState(c, nextc)) // Releasing the read lock has no effect on readers, // but it may allow waiting writers to proceed if // both read and write locks are now free. return nextc == 0; } }
t3 进入 sync.releaseShared(1) 中,调用 tryReleaseShared(1) 让计数减一,这回计数为零了,进入
doReleaseShared() 将头节点从 -1 改为 0 并唤醒老二,即
private void doReleaseShared() { for (;;) { Node h = head; if (h != null && h != tail) { int ws = h.waitStatus; if (ws == Node.SIGNAL) { if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0)) continue; // loop to recheck cases // 本质上唤醒t4 unparkSuccessor(h); } else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE)) continue; // loop on failed CAS } if (h == head) // loop if head changed break; } }
之后 t4 在 acquireQueued 中 parkAndCheckInterrupt 处恢复运行,再次 for (;😉 这次自己是老二,并且没有其他竞争,tryAcquire(1) 成功,修改头结点,流程结束
StampedLock
该类自 JDK 8 加入,是为了进一步优化读性能,它的特点是在使用读锁、写锁时都必须配合【戳】使用
这里对优化性能部分做了专门的解读:
之前学读写锁,其实已经看到了读读可以并发,已经很快了,但是还不够快,读读并发的时候,底层还是用cas的方式去修改它的状态,读锁的高16位去修改它的状态,它还是性能上比不上不加锁,如果希望读取的性能达到这种极致,那么就可以使用StampedLock。
加解读锁
long stamp = lock.readLock(); lock.unlockRead(stamp);
加解写锁
long stamp = lock.writeLock(); lock.unlockWrite(stamp);
乐观读,StampedLock 支持 tryOptimisticRead() 方法(乐观读),读取完毕后需要做一次 戳校验 如果校验通过,表示这期间确实没有写操作,数据可以安全使用,如果校验没通过,需要重新获取读锁,保证数据安全。
// 这里面没有加任何的锁 long stamp = lock.tryOptimisticRead(); // 验戳 if(!lock.validate(stamp)){ // 锁升级 }
提供一个 数据容器类 内部分别使用读锁保护数据的 read() 方法,写锁保护数据的 write() 方法
class DataContainerStamped { private int data; private final StampedLock lock = new StampedLock(); public DataContainerStamped(int data) { this.data = data; } public int read(int readTime) { long stamp = lock.tryOptimisticRead(); log.debug("optimistic read locking...{}", stamp); sleep(readTime); if (lock.validate(stamp)) { log.debug("read finish...{}, data:{}", stamp, data); return data; } // 锁升级 - 读锁 log.debug("updating to read lock... {}", stamp); try { stamp = lock.readLock(); log.debug("read lock {}", stamp); sleep(readTime); log.debug("read finish...{}, data:{}", stamp, data); return data; } finally { log.debug("read unlock {}", stamp); lock.unlockRead(stamp); } } public void write(int newData) { long stamp = lock.writeLock(); log.debug("write lock {}", stamp); try { sleep(2); this.data = newData; } finally { log.debug("write unlock {}", stamp); lock.unlockWrite(stamp); } } }
测试 读-读 可以优化
public static void main(String[] args) { DataContainerStamped dataContainer = new DataContainerStamped(1); new Thread(() -> { dataContainer.read(1); }, "t1").start(); sleep(0.5); new Thread(() -> { dataContainer.read(0); }, "t2").start(); }
输出结果,可以看到实际没有加读锁
15:58:50.217 c.DataContainerStamped [t1] - optimistic read locking...256 15:58:50.717 c.DataContainerStamped [t2] - optimistic read locking...256 15:58:50.717 c.DataContainerStamped [t2] - read finish...256, data:1 15:58:51.220 c.DataContainerStamped [t1] - read finish...256, data:1
测试 读-写 时优化读补加读锁
public static void main(String[] args) { DataContainerStamped dataContainer = new DataContainerStamped(1); new Thread(() -> { dataContainer.read(1); }, "t1").start(); sleep(0.5); new Thread(() -> { dataContainer.write(100); }, "t2").start(); }
输出结果
15:57:00.219 c.DataContainerStamped [t1] - optimistic read locking...256 15:57:00.717 c.DataContainerStamped [t2] - write lock 384 15:57:01.225 c.DataContainerStamped [t1] - updating to read lock... 256 15:57:02.719 c.DataContainerStamped [t2] - write unlock 384 15:57:02.719 c.DataContainerStamped [t1] - read lock 513 15:57:03.719 c.DataContainerStamped [t1] - read finish...513, data:1000 15:57:03.719 c.DataContainerStamped [t1] - read unlock 513
注意
- StampedLock 不支持条件变量
- StampedLock 不支持可重入