共享问题
小故事
老王(操作系统)有一个功能强大的算盘(CPU),现在想把它租出去,赚一点外快
小南、小女(线程)来使用这个算盘来进行一些计算,并按照时间给老王支付费用
但小南不能一天24小时使用算盘,他经常要小憩一会(sleep),又或是去吃饭上厕所(阻塞 io 操作),有时还需要一根烟,没烟时思路全无(wait)这些情况统称为(阻塞)
在这些时候,算盘没利用起来(不能收钱了),老王觉得有点不划算
另外,小女也想用用算盘,如果总是小南占着算盘,让小女觉得不公平
于是,老王灵机一动,想了个办法 [ 让他们每人用一会,轮流使用算盘 ](分时系统)
这样,当小南阻塞的时候,算盘可以分给小女使用,不会浪费,反之亦然
最近执行的计算比较复杂,需要存储一些中间结果,而学生们的脑容量(工作内存)不够,所以老王申请了一个笔记本(主存),把一些中间结果先记在本上
计算流程是这样的
但是由于分时系统,有一天还是发生了事故
小南刚读取了初始值 0 做了个 +1 运算,还没来得及写回结果
老王说 [ 小南,你的时间到了,该别人了,记住结果走吧 ],于是小南念叨着 [ 结果是1,结果是1…] 不甘心地到一边待着去了(上下文切换)
老王说 [ 小女,该你了 ],小女看到了笔记本上还写着 0 做了一个 -1 运算,将结果 -1 写入笔记本
这时小女的时间也用完了,老王又叫醒了小南:[小南,把你上次的题目算完吧],小南将他脑海中的结果 1 写入了笔记本
小南和小女都觉得自己没做错,但笔记本里的结果是 1 而不是 0
Java的体现
两个线程对初始值为 0 的静态变量一个做自增,一个做自减,各做 5000 次,结果是 0 吗?
static int counter = 0; public static void main(String[] args) throws InterruptedException { Thread t1 = new Thread(() -> { for (int i = 0; i < 5000; i++) { counter++; } }, "t1"); Thread t2 = new Thread(() -> { for (int i = 0; i < 5000; i++) { counter--; } }, "t2"); t1.start(); t2.start(); t1.join(); t2.join(); log.debug("{}",counter); }
问题分析
以上的结果可能是正数、负数、零。为什么呢?因为 Java 中对静态变量的自增,自减并不是原子操作,要彻底理解,必须从字节码来进行分析
例如对于 i++ 而言(i 为静态变量),实际会产生如下的 JVM 字节码指令:
getstatic i // 获取静态变量i的值 iconst_1 // 准备常量1 iadd // 自增 putstatic i // 将修改后的值存入静态变量i
而对应 i-- 也是类似:
getstatic i // 获取静态变量i的值 iconst_1 // 准备常量1 isub // 自减 putstatic i // 将修改后的值存入静态变量i
而 Java 的内存模型如下,完成静态变量的自增,自减需要在主存和工作内存中进行数据交换:
如果是单线程以上 8 行代码是顺序执行(不会交错)没有问题:
但多线程下这 8 行代码可能交错运行:
出现负数的情况:
出现正数的情况:
临界区 Critical Section
一个程序运行多个线程本身是没有问题的
问题出在多个线程访问共享资源
- 多个线程读共享资源其实也没有问题
- 在多个线程对共享资源读写操作时发生指令交错,就会出现问题
一段代码块内如果存在对共享资源的多线程读写操作,称这段代码块为临界区
例如,下面代码中的临界区
static int counter = 0; static void increment() // 临界区 { counter++; } static void decrement() // 临界区 { counter--; }
竞态条件 Race Condition
多个线程在临界区内执行,由于代码的执行序列不同而导致结果无法预测,称之为发生了竞态条件
synchronized 解决方案
为了避免临界区的竞态条件发生,有多种手段可以达到目的。
- 阻塞式的解决方案:synchronized,Lock
- 非阻塞式的解决方案:原子变量
目前使用阻塞式的解决方案:synchronized,来解决上述问题,即俗称的【对象锁】,它采用互斥的方式让同一时刻至多只有一个线程能持有【对象锁】,其它线程再想获取这个【对象锁】时就会阻塞住。这样就能保证拥有锁的线程可以安全的执行临界区内的代码,不用担心线程上下文切换
synchronized
语法
synchronized(对象) // 线程1, 线程2(blocked) { 临界区 }
解决
static int counter = 0; static final Object room = new Object(); public static void main(String[] args) throws InterruptedException { Thread t1 = new Thread(() -> { for (int i = 0; i < 5000; i++) { synchronized (room) { counter++; } } }, "t1"); Thread t2 = new Thread(() -> { for (int i = 0; i < 5000; i++) { synchronized (room) { counter--; } } }, "t2"); t1.start(); t2.start(); t1.join(); t2.join(); log.debug("{}",counter); }
你可以做这样的类比:
- synchronized(对象) 中的对象,可以想象为一个房间(room),有唯一入口(门)房间只能一次进入一人进行计算,线程 t1,t2 想象成两个人
- 当线程 t1 执行到 synchronized(room) 时就好比 t1 进入了这个房间,并锁住了门拿走了钥匙,在门内执行count++ 代码
- 这时候如果 t2 也运行到了 synchronized(room) 时,它发现门被锁住了,只能在门外等待,发生了上下文切换,阻塞住了
- 这中间即使 t1 的 cpu 时间片不幸用完,被踢出了门外(不要错误理解为锁住了对象就能一直执行下去哦),这时门还是锁住的,t1 仍拿着钥匙,t2 线程还在阻塞状态进不来,只有下次轮到 t1 自己再次获得时间片时才能开门进入
- 当 t1 执行完 synchronized{} 块内的代码,这时候才会从 obj 房间出来并解开门上的锁,唤醒 t2 线程把钥匙给他。t2 线程这时才可以进入 obj 房间,锁住了门拿上钥匙,执行它的 count-- 代码
用图来表示
思考
synchronized 实际是用对象锁保证了临界区内代码的原子性,临界区内的代码对外是不可分割的,不会被线程切换所打断。
为了加深理解,请思考下面的问题
1.如果把 synchronized(obj) 放在 for 循环的外面,如何理解?
其实很好回答,就是相当于保证了整个for循环的原子性。
2.如果 t1 synchronized(obj1) 而 t2 synchronized(obj2) 会怎样运作?
相当于没有作用,因为想要保护共享资源,需要让多个资源保护同一把锁
3.如果 t1 synchronized(obj) 而 t2 没有加会怎么样?如何理解?
由于线程2没有加锁,根据上图所示,第一次上下文切换的时候,就不会出现获取锁被阻塞的情况,所以就会直接写入,导致出现问题。
面向对象的改进
把需要保护的共享变量放入一个类
class Room { int value = 0; public void increment() { synchronized (this) { value++; } } public void decrement() { synchronized (this) { value--; } } public int get() { synchronized (this) { return value; } } } @Slf4j public class Test1 { public static void main(String[] args) throws InterruptedException { Room room = new Room(); Thread t1 = new Thread(() -> { for (int j = 0; j < 5000; j++) { room.increment(); } }, "t1"); Thread t2 = new Thread(() -> { for (int j = 0; j < 5000; j++) { room.decrement(); } }, "t2"); t1.start(); t2.start(); t1.join(); t2.join(); log.debug("count: {}" , room.get()); } }
这里其实需要关注的是为什么get方法也上锁了,其实是为了保证获取值是一个准确的结果,而不是一个中间的结果,需要加锁。
方法上的synchronized
class Test{ public synchronized void test() { } } 等价于 class Test{ public void test() { synchronized(this) { // 实际上是对 对象实例上锁,而不是对象本身 } } } class Test{ public synchronized static void test() { } } 等价于 class Test{ public static void test() { synchronized(Test.class) { } } }
所谓的线程八锁
其实就是考察 synchronized 锁住的是哪个对象
情况1:
class Number{ public synchronized void a() { log.debug("1"); } public synchronized void b() { log.debug("2"); } } public static void main(String[] args) { Number n1 = new Number(); new Thread(()->{ n1.a(); }).start(); new Thread(()->{ n1.b(); }).start(); }
先1后2 或者 先2后1 原因是因为 同一个对象实例,都是同一把锁,谁先抢到锁谁先输出
情况2:
class Number{ public synchronized void a() { sleep(1); log.debug("1"); } public synchronized void b() { log.debug("2"); } } public static void main(String[] args) { Number n1 = new Number(); new Thread(()->{ n1.a(); }).start(); new Thread(()->{ n1.b(); }).start(); }
1s后1 2 或者 2 1s后 1 情况与情况1一致
情况3:
class Number{ public synchronized void a() { sleep(1); log.debug("1"); } public synchronized void b() { log.debug("2"); } public void c() { log.debug("3"); } } public static void main(String[] args) { Number n1 = new Number(); new Thread(()->{ n1.a(); }).start(); new Thread(()->{ n1.b(); }).start(); new Thread(()->{ n1.c(); }).start(); }
先 3 1s后 1 2 或者 2 3 1s 后 1 或者 3 2 1s 后 1 这个总体上还是和情况1一致
情况4:
class Number{ public synchronized void a() { sleep(1); log.debug("1"); } public synchronized void b() { log.debug("2"); } } public static void main(String[] args) { Number n1 = new Number(); Number n2 = new Number(); new Thread(()->{ n1.a(); }).start(); new Thread(()->{ n2.b(); }).start(); }
2 1s 后 1 之所以会出现这样的情况是因为,因为 synchronized(this)锁住的是 实例对象,而main中有两个不一样的实例,那么其实就相当于没加锁,所以自然是这个执行顺序
剑指JUC原理-4.共享资源和线程安全性(下):https://developer.aliyun.com/article/1413596