剑指JUC原理-5.synchronized底层原理(下)

简介: 剑指JUC原理-5.synchronized底层原理

剑指JUC原理-5.synchronized底层原理(上):https://developer.aliyun.com/article/1413602


锁膨胀


如果在尝试加轻量级锁的过程中,CAS 操作无法成功,这时一种情况就是有其它线程为此对象加上了轻量级锁(有竞争),这时需要进行锁膨胀,将轻量级锁变为重量级锁。

static Object obj = new Object();
public static void method1() {
 synchronized( obj ) {
 // 同步块
 }
}

当 Thread-1 进行轻量级加锁时,Thread-0 已经对该对象加了轻量级锁

这时 Thread-1 加轻量级锁失败,进入锁膨胀流程


  • 即为 Object 对象申请 Monitor 锁,让 Object 指向重量级锁地址
  • 然后自己进入 Monitor 的 EntryList BLOCKED

当 Thread-0 退出同步块解锁时,使用 cas 将 Mark Word 的值恢复给对象头,失败。这时会进入重量级解锁流程,即按照 Monitor 地址找到 Monitor 对象,设置 Owner 为 null,唤醒 EntryList 中 BLOCKED 线程


自旋优化


重量级锁竞争的时候,还可以使用自旋(不阻塞,多进行几次循环)来进行优化,如果当前线程自旋成功(即这时候持锁线程已经退出了同步块,释放了锁),这时当前线程就可以避免阻塞(因为阻塞,线程会发生一次上下文切换,极大的浪费性能)。


自旋重试成功的情况

自旋重试失败的情况

自旋会占用 CPU 时间,单核 CPU 自旋就是浪费,多核 CPU 自旋才能发挥优势。


在 Java 6 之后自旋锁是自适应的,比如对象刚刚的一次自旋操作成功过,那么认为这次自旋成功的可能性会高,就多自旋几次;反之,就少自旋甚至不自旋,总之,比较智能。


Java 7 之后不能控制是否开启自旋功能


偏向锁


轻量级锁在没有竞争时(就自己这个线程),每次重入仍然需要执行 CAS 操作。


Java 6 中引入了偏向锁来做进一步优化:只有第一次使用 CAS 将线程 ID 设置到对象的 Mark Word 头,之后发现这个线程 ID 是自己的就表示没有竞争,不用重新 CAS。以后只要不发生竞争,这个对象就归该线程所有

static final Object obj = new Object();
public static void m1() {
 synchronized( obj ) {
 // 同步块 A
 m2();
 }
}
public static void m2() {
 synchronized( obj ) {
 // 同步块 B
 m3();
 }
}
public static void m3() {
 synchronized( obj ) {
 // 同步块 C
 }
}


偏向状态


偏向锁 使用情况,冲突很少的时候,就一个线程


如果使用场景是多线程,经常竞争,那么偏向锁就不合适了


回忆一下对象头格式

一个对象创建时:


  • 如果开启了偏向锁(默认开启),那么对象创建后,markword 值为 0x05 即最后 3 位为 101,这时它的thread、epoch、age 都为 0
  • 偏向锁是默认是延迟的,不会在程序启动时立即生效,如果想避免延迟,可以加 VM 参数 -XX:BiasedLockingStartupDelay=0 来禁用延迟
class Dog {}
// 添加虚拟机参数 -XX:BiasedLockingStartupDelay=0 
public static void main(String[] args) throws IOException {
 Dog d = new Dog();
 ClassLayout classLayout = ClassLayout.parseInstance(d);
 new Thread(() -> {
 log.debug("synchronized 前");
 System.out.println(classLayout.toPrintableSimple(true));
 synchronized (d) {
 log.debug("synchronized 中");
 System.out.println(classLayout.toPrintableSimple(true));
 }
 log.debug("synchronized 后");
 System.out.println(classLayout.toPrintableSimple(true));
 }, "t1").start();
}

输出:

11:08:58.117 c.TestBiased [t1] - synchronized 前
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000101 
11:08:58.121 c.TestBiased [t1] - synchronized 中
00000000 00000000 00000000 00000000 00011111 11101011 11010000 00000101 
11:08:58.121 c.TestBiased [t1] - synchronized 后
00000000 00000000 00000000 00000000 00011111 11101011 11010000 00000101 

可以从输出中看到,主线程切换了,以后对应的dog对象就给主线程用了。


注意:处于偏向锁的对象解锁后,线程 id 仍存储于对象头中


  • 如果没有开启偏向锁,那么对象创建后,markword 值为 0x01 即最后 3 位为 001,这时它的 hashcode、age 都为 0,第一次用到 hashcode 时才会赋值


在上面测试代码运行时在添加 VM 参数 -XX:-UseBiasedLocking 禁用偏向锁


输出:

11:13:10.018 c.TestBiased [t1] - synchronized 前
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
11:13:10.021 c.TestBiased [t1] - synchronized 中
00000000 00000000 00000000 00000000 00100000 00010100 11110011 10001000 
11:13:10.021 c.TestBiased [t1] - synchronized 后
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001

可以看到,没有偏向锁了,只有轻量级锁了。(第四行的最后两位00就是轻量锁的标志)


撤销 - 调用对象 hashCode


调用了对象的 hashCode,但偏向锁的对象 MarkWord 中存储的是线程 id,如果调用 hashCode 会导致偏向锁被撤销,如图所示:

  • 轻量级锁会在锁记录中记录 hashCode
  • 重量级锁会在 Monitor 中记录 hashCode


在调用 hashCode 后使用偏向锁,记得去掉 -XX:-UseBiasedLocking


输出

11:22:10.386 c.TestBiased [main] - 调用 hashCode:1778535015 
11:22:10.391 c.TestBiased [t1] - synchronized 前
00000000 00000000 00000000 01101010 00000010 01001010 01100111 00000001 
11:22:10.393 c.TestBiased [t1] - synchronized 中
00000000 00000000 00000000 00000000 00100000 11000011 11110011 01101000 
11:22:10.393 c.TestBiased [t1] - synchronized 后
00000000 00000000 00000000 01101010 00000010 01001010 01100111 00000001

可以看到,调用之后只能走 轻量级锁了。


撤销 - 其它线程使用对象


当有其它线程使用偏向锁对象时,会将偏向锁升级为轻量级锁

Dog d = new Dog();
 Thread t1 = new Thread(() -> {
 synchronized (d) {
 log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 synchronized (TestBiased.class) {
 TestBiased.class.notify();
 }
 // 如果不用 wait/notify 使用 join 必须打开下面的注释
 // 因为:t1 线程不能结束,否则底层线程可能被 jvm 重用作为 t2 线程,底层线程 id 是一样的
 /*try {
 System.in.read();
 } catch (IOException e) {
 e.printStackTrace();
 }*/
 }, "t1");
 t1.start();
Thread t2 = new Thread(() -> {
 synchronized (TestBiased.class) {
 try {
 TestBiased.class.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
 synchronized (d) {
 log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
 }, "t2");
 t2.start();
}

输出

[t1] - 00000000 00000000 00000000 00000000 00011111 01000001 00010000 00000101 
[t2] - 00000000 00000000 00000000 00000000 00011111 01000001 00010000 00000101 
[t2] - 00000000 00000000 00000000 00000000 00011111 10110101 11110000 01000000 
[t2] - 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 


撤销 - 调用 wait/notify


前面学习了 重量级锁,轻量级锁,偏向锁的概念,纵观这三个概念,发现 wait/notify 只有重量锁的概念中涉及了。

Dog d = new Dog();
 Thread t1 = new Thread(() -> {
 log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
 synchronized (d) {
 log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
 try {
 d.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 }, "t1");
 t1.start();
 new Thread(() -> {
 try {
 Thread.sleep(6000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 synchronized (d) {
 log.debug("notify");
 d.notify();
 }
 }, "t2").start();

输出:

[t1] - 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000101 
[t1] - 00000000 00000000 00000000 00000000 00011111 10110011 11111000 00000101 
[t2] - notify 
[t1] - 00000000 00000000 00000000 00000000 00011100 11010100 00001101 11001010 

可以看到,t1最终以10结尾。


批量重偏向


如果对象虽然被多个线程访问,但没有竞争,这时偏向了线程 T1 的对象仍有机会重新偏向 T2,重偏向会重置对象的 Thread ID


当**撤销偏向锁(对性能也是有一定损耗的)**阈值超过 20 次后,jvm 会这样觉得,我是不是偏向错了呢,于是会在给这些对象加锁时重新偏向至加锁线程

Vector<Dog> list = new Vector<>();
 Thread t1 = new Thread(() -> {
 for (int i = 0; i < 30; i++) {
 Dog d = new Dog();
 list.add(d);
 synchronized (d) {
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 }
 synchronized (list) {
 list.notify();
 } 
 }, "t1");
 t1.start();
 Thread t2 = new Thread(() -> {
 synchronized (list) {
 try {
 list.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 log.debug("===============> ");
 for (int i = 0; i < 30; i++) {
 Dog d = list.get(i);
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 synchronized (d) {
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 }, "t2");
 t2.start();

输出:

[t1] - 0 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 1 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 2 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 3 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 4 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 5 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 6 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 7 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 8 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 9 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 10 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 11 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 12 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 13 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 14 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 15 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 16 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 17 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 18 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - ===============>
[t2] - 0 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 0 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 1 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 1 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 1 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 2 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 2 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 2 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 3 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 3 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 3 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 4 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 4 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 4 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 5 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 5 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 5 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 6 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 6 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 6 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 7 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 7 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 8 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 8 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 9 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 9 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 9 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 10 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 10 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 10 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 11 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 11 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 11 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 12 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 12 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 12 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 13 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 13 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 13 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 14 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 14 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 14 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 15 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 15 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 16 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 16 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 16 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 17 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 17 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 17 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 18 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 18 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 18 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 

[t1] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101

[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101

[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101

[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101


因为阈值是20次,以第20次作比较发现,其偏向的线程确实改变了


批量撤销


当撤销偏向锁阈值超过 40 次后,jvm 会这样觉得,自己确实偏向错了,根本就不该偏向。于是整个类的所有对象都会变为不可偏向的,新建的对象也是不可偏向的

Vector<Dog> list = new Vector<>();
 int loopNumber = 39;
 t1 = new Thread(() -> {
 for (int i = 0; i < loopNumber; i++) {
 Dog d = new Dog();
 list.add(d);
 synchronized (d) {
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 }
 LockSupport.unpark(t2);
 }, "t1");
 t1.start();
 t2 = new Thread(() -> {
 LockSupport.park();
 log.debug("===============> ");
 for (int i = 0; i < loopNumber; i++) {
 Dog d = list.get(i);
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 synchronized (d) {
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 LockSupport.unpark(t3);
 }, "t2");
t2.start();
 t3 = new Thread(() -> {
 LockSupport.park();
 log.debug("===============> ");
 for (int i = 0; i < loopNumber; i++) {
 Dog d = list.get(i);
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 synchronized (d) {
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
 }
 }, "t3");
 t3.start();
 t3.join();
 log.debug(ClassLayout.parseInstance(new Dog()).toPrintableSimple(true));

首先先执行t1,偏向都是t1


然后执行t2, 前十九次一开始先是偏向,然后变成轻量级锁,最后变为不可偏向(偏向撤销),后二十次又变成了偏向锁t2


然后执行t3,由于 其它线程使用了对象锁,所以偏向状态升级为了轻量级锁,从一开始就是不可偏向的,前19次都是这样的,从第20次开始执行的是撤销操作(相当于总共到了四十次)所以所有的对象都变成了不可偏向的状态


锁消失


public void a() throws Exception {
 x++;
}
public void b() throws Exception {
 Object o = new Object();
 synchronized (o) {
 x++;
 }
}

因为有JIT编译器,会对Java字节码做进一步优化


所以当加锁会影响性能的时候,会自动在编译的过程中消除锁


目录
相关文章
|
6月前
|
Java
剑指JUC原理-14.ReentrantLock原理(下)
剑指JUC原理-14.ReentrantLock原理
36 1
|
6月前
|
SQL Java 数据库连接
剑指JUC原理-15.ThreadLocal(上)
剑指JUC原理-15.ThreadLocal
76 1
|
6月前
|
存储 安全 Java
剑指JUC原理-4.共享资源和线程安全性(上)
剑指JUC原理-4.共享资源和线程安全性
79 1
|
6月前
|
存储 算法 安全
剑指JUC原理-5.synchronized底层原理(上)
剑指JUC原理-5.synchronized底层原理
54 0
|
6月前
|
安全 Java 程序员
剑指JUC原理-14.ReentrantLock原理(上)
剑指JUC原理-14.ReentrantLock原理
44 0
|
6月前
|
存储 Java 数据安全/隐私保护
剑指JUC原理-15.ThreadLocal(中)
剑指JUC原理-15.ThreadLocal
47 0
|
6月前
|
Java Linux API
剑指JUC原理-2.线程
剑指JUC原理-2.线程
62 0
|
6月前
|
安全 算法 Java
剑指JUC原理-19.线程安全集合(上)
剑指JUC原理-19.线程安全集合
49 0
|
6月前
|
缓存 安全 前端开发
剑指JUC原理-8.Java内存模型(上)
剑指JUC原理-8.Java内存模型
67 0
|
6月前
|
Java 编译器 测试技术
剑指JUC原理-8.Java内存模型(中)
剑指JUC原理-8.Java内存模型
55 0