德国列车误点了,大数据分析来救援

简介:

德国人过去引以为傲的精准,反映在列车极为准时上,可惜这个传统逐渐失守,但德国人决定找回过去的荣耀,过去 2 年来,西门子(Siemens)的工程师努力应用大数据资料分析协助预防性维修,来让列车恢复准点。

根据欧盟报告,德国的列车准点率逐渐“掉漆”,2014 年只有 78.3% 德国长途列车准点,准点的定义是在表定时间误差 6 分钟的时间内抵达,这个糟糕的准点率不仅大幅退步,更是排名垫底,在 23 个欧盟国家内只赢过 2 个国家,立陶宛的 74.8% 准点率以及葡萄牙的 77% 准点率。

就在德国准点率掉漆的同时,德国综合机电大厂西门子,却在西班牙创造准点率标竿,西门子与西班牙国家铁路(Renfe)的合资公司,在西班牙所管理 的列车行程中,每 2,300 趟只有一趟延迟超过 5 分钟,准点率高达 99.98%,不仅高于西班牙全国平均 89.9%,更高于欧盟之中的佼佼者芬兰的 95.4%。

西班牙国家铁路对准点率的信心,反应在误点赔偿上,要是从马德里到巴塞隆纳的高速列车延迟超过 15 分钟,可以全额退费赔偿。

这个准点率标竿来自于物联网与大数据的概念,西门子列车上如今有无数感测器可以传递信息给西门子做分析,西门子把慕尼黑附近阿拉克(Allach) 的火车头工厂改造成为数据中心,有 30 位软件专家分析西门子列车感测器传来的大量资料,以大数据分析事先预测零部件该更换的时间,在实际损坏之前,于例行维修中预先更换,确保行驶中不会发生故 障,也就防止因机械故障造成的误点。

一辆列车延迟,会导致后续车班大乱,以伦敦地铁来说,要是早上 7 点有列车故障,到 12 点车班都还会受到影响,因此能预先维修防止故障对铁路运输来说相当重要。

预先维修改变产业营运方式

预先维修并非新观念,在工厂生产线领域早在 15 年前就开始应用,因为工厂生产线若是运转中因零件长久耗损而故障停摆,产线整个停下来修理,那可损失大了,因此很早就发展预先维修。

随着网络链接性提升,预先维修的观念逐渐扩展至消费性产品与服务领域,其中,航空产业又是新观念的领航者,两大航空引擎商劳斯莱斯(Rolls- Royce)与奇异(GE)英雄所见略同,认为卖引擎不只是银货两讫就好,预先维修的观念,让引擎制造商还能以时间为单位收取维护服务费用,在服务期限内 保证客户的引擎不发生故障。

预先维修也改变了铁路业的商业模式,过去铁路业者要自行准备预算来修复故障车辆与系统,如今,西门子将预先维修当做服务销售,卖给铁路营运者“可用性”,保证列车在需要时不故障一定可用。

这种概念也延伸到汽车业,过去定期回厂检修时,若发现车主的耗件已经损耗 7 成,往往就直接更换,因为这个耗件大概无法撑到明年回厂检修。但是,其实该耗件或许还能安全地开上半年没问题,提早更换不但花钱,也造成浪费;如今,奥迪 (Audi)就引进了预先维修概念,汽车车身上装有感测器,能把资料传给经销商,若从资料中察觉有耗件即将损坏,就立即安排在最适当时间回厂换修,如此一 来,一方面可确保不会开到一半故障,一方面可把耗件使用到最长时间,节省消费者的金钱。

同样的概念也早已应用于电梯产业,蒂森克虏伯(ThyssenKrupp)于 2015 年开始于其全球 120 万辆电梯中安装加速度、声音与震动感测器,透过回传的资料,可以准确预估电梯 10~20 天内需要维修,此时蒂森克虏伯可提前通知客户,告知有零件耗损风险,需要预先维修,由于提前通知,利于安排在客户最方便的时间进行。而由于有必要才维修, 也减少了维修次数,目前电梯平均每年定期维修 5~6 次,加装感测器之后,只需要 3 次,1 年可为蒂森克虏伯节省高达数亿欧元。

物联网与大数据分析应用,不仅可望让德国列车恢复准时,也已经改变许多产业的营运方式。

本文转自d1net(转载)

相关文章
|
1月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
54 4
|
1月前
|
SQL 消息中间件 分布式计算
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
63 5
|
2月前
|
存储 大数据 测试技术
用于大数据分析的数据存储格式:Parquet、Avro 和 ORC 的性能和成本影响
在大数据环境中,数据存储格式直接影响查询性能和成本。本文探讨了 Parquet、Avro 和 ORC 三种格式在 Google Cloud Platform (GCP) 上的表现。Parquet 和 ORC 作为列式存储格式,在压缩和读取效率方面表现优异,尤其适合分析工作负载;Avro 则适用于需要快速写入和架构演化的场景。通过对不同查询类型(如 SELECT、过滤、聚合和联接)的基准测试,本文提供了在各种使用案例中选择最优存储格式的建议。研究结果显示,Parquet 和 ORC 在读取密集型任务中更高效,而 Avro 更适合写入密集型任务。正确选择存储格式有助于显著降低成本并提升查询性能。
386 1
用于大数据分析的数据存储格式:Parquet、Avro 和 ORC 的性能和成本影响
|
2天前
|
存储 监控 数据挖掘
【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器
ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。
25 14
|
8天前
|
数据采集 机器学习/深度学习 搜索推荐
大数据与社交媒体:用户行为分析
【10月更文挑战第31天】在数字化时代,社交媒体成为人们生活的重要部分,大数据技术的发展使其用户行为分析成为企业理解用户需求、优化产品设计和提升用户体验的关键手段。本文探讨了大数据在社交媒体用户行为分析中的应用,包括用户画像构建、情感分析、行为路径分析和社交网络分析,以及面临的挑战与机遇。
|
7天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
33 1
|
8天前
|
机器学习/深度学习 搜索推荐 大数据
大数据与教育:学生表现分析的工具
【10月更文挑战第31天】在数字化时代,大数据成为改善教育质量的重要工具。本文探讨了大数据在学生表现分析中的应用,介绍学习管理系统、智能评估系统、情感分析技术和学习路径优化等工具,帮助教育者更好地理解学生需求,制定个性化教学策略,提升教学效果。尽管面临数据隐私等挑战,大数据仍为教育创新带来巨大机遇。
|
11天前
|
人工智能 供应链 搜索推荐
大数据分析:解锁商业智能的秘密武器
【10月更文挑战第31天】在信息爆炸时代,大数据分析成为企业解锁商业智能的关键工具。本文探讨了大数据分析在客户洞察、风险管理、供应链优化、产品开发和决策支持等方面的应用,强调了明确分析目标、选择合适工具、培养专业人才和持续优化的重要性,并展望了未来的发展趋势。
|
27天前
|
存储 SQL 分布式计算
湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
【10月更文挑战第7天】湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
41 1
|
1月前
|
存储 消息中间件 大数据
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
32 4
下一篇
无影云桌面