大数据分析与云技术结合

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据平台 大数据中心 网络大数据(http://www.raincent.com) 大数据的出现使业务智能真正地走入了21世纪。但事实上“大数据”词代表的并不是解决方案,而是一类问题。
大数据平台 大数据中心 网络大数据http://www.raincent.com
大数据的出现使业务智能真正地走入了21世纪。但事实上“大数据”词代表的并不是解决方案,而是一类问题。在这些PB数量级的数据中,隐藏着怎样的价值?我们从中能得什么,并且使之指导业务部署的方方面面。但这一巨大量数据实际上有用的没有多少。所以为了利用其隐藏的价值,企业需要收集、过滤,并通过情感分析应用、定位工具以及其它的技术来分析它,从中产生有用的信息,从而为今后的业务发展服务。
云可作为大数据分析的使能器

Forrester定义大数据为“在大规模的经济性下,获取数据的技术和技能。”这里最关键的一个词是经济。如果提取、处理和利用数据的成本超过了数据价值本身,那么这项工作就是没意义的。幸运的是随着数据量的不断增长,技术也在不断地进化,可帮助大部分企业利用这些数据。云技术,无论是公有云、私有云还是混合云,在让企业从大数据分析中提取潜在的ROI方面,都是不可或缺的一部分。

收集并过虑

前面已经提到巨大量的数据中可用的部分很少,但还是有大量的数据需要过虑,以后关联并存储其有用性。对大量存储着临时信息的基础设施投资的利益几乎没有,因为这一临时数据大部分都会被丢弃。另外从公司防火墙外部移到内部的网络的数据也不会获得什么有价值的信息,而且处理它也是使用IT经理头疼的一件事。

这一阶段的大数据过滤是一个完美的公有云平台应用,它可以提供按需扩展的计算和存储资源。

分析

一旦数据转化为可用的形式,那么就进入到分析产生信息的阶段。从长远来看,提供给分析应用的原始数据没有必要一下保留,需要有效存储是分析处理的结果。公有云和混合云技术可用在分析阶段,在数据集处理阶段可引入Hadoop或类似替代方案。在公有云用户的情况下,原始分析阶段可以在公有云基础设施上执行,然后使用私有云组件把处理过的、可用的信息拿到公司内部。

虚拟化、集成和协作

在这一阶段,我们实际上已经拥有了可用的信息,可以用来指导决策。这还没有结束,还要使这些信息可为用户使用,转化并住处到现有的系统中,如企业资源规划和客户资源管理应用。软件即服务应用运行在云中,利用稍早阶段开发的数据,来强化集成,让用户相互协作。

有了云计算技术,大数据的价值才能得到更好的转化。不得不说,对于在使数据转化为商用方面,云是一个相当完美的平台。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
27天前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
92 2
|
16天前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
33 4
|
17天前
|
关系型数据库 分布式数据库 数据库
PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具
在数字化时代,企业面对海量数据的挑战,PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具。它不仅支持高速数据读写,还通过数据分区、索引优化等策略提升分析效率,适用于电商、金融等多个行业,助力企业精准决策。
30 4
|
18天前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
109 5
|
1月前
|
存储 监控 数据挖掘
【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器
ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。
113 14
|
1月前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
84 2
|
1月前
|
数据采集 机器学习/深度学习 搜索推荐
大数据与社交媒体:用户行为分析
【10月更文挑战第31天】在数字化时代,社交媒体成为人们生活的重要部分,大数据技术的发展使其用户行为分析成为企业理解用户需求、优化产品设计和提升用户体验的关键手段。本文探讨了大数据在社交媒体用户行为分析中的应用,包括用户画像构建、情感分析、行为路径分析和社交网络分析,以及面临的挑战与机遇。
|
1月前
|
机器学习/深度学习 搜索推荐 大数据
大数据与教育:学生表现分析的工具
【10月更文挑战第31天】在数字化时代,大数据成为改善教育质量的重要工具。本文探讨了大数据在学生表现分析中的应用,介绍学习管理系统、智能评估系统、情感分析技术和学习路径优化等工具,帮助教育者更好地理解学生需求,制定个性化教学策略,提升教学效果。尽管面临数据隐私等挑战,大数据仍为教育创新带来巨大机遇。
|
1月前
|
人工智能 供应链 搜索推荐
大数据分析:解锁商业智能的秘密武器
【10月更文挑战第31天】在信息爆炸时代,大数据分析成为企业解锁商业智能的关键工具。本文探讨了大数据分析在客户洞察、风险管理、供应链优化、产品开发和决策支持等方面的应用,强调了明确分析目标、选择合适工具、培养专业人才和持续优化的重要性,并展望了未来的发展趋势。
|
1月前
|
数据采集 分布式计算 OLAP
最佳实践:AnalyticDB在企业级大数据分析中的应用案例
【10月更文挑战第22天】在数字化转型的大潮中,企业对数据的依赖程度越来越高。如何高效地处理和分析海量数据,从中提取有价值的洞察,成为企业竞争力的关键。作为阿里云推出的一款实时OLAP数据库服务,AnalyticDB(ADB)凭借其强大的数据处理能力和亚秒级的查询响应时间,已经在多个行业和业务场景中得到了广泛应用。本文将从个人的角度出发,分享多个成功案例,展示AnalyticDB如何助力企业在广告投放效果分析、用户行为追踪、财务报表生成等领域实现高效的数据处理与洞察发现。
55 0