【数据结构和算法】判断子序列

简介: 给定字符串s和t,判断s是否为t的子序列。字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。进阶:如果有大量输入的 S,称作 S1, S2, ... , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?

其他系列文章导航

Java基础合集

数据结构与算法合集

设计模式合集

多线程合集

分布式合集

ES合集


文章目录

其他系列文章导航

文章目录

前言

一、题目描述

二、题解

2.1 方法一:双指针

三、代码

3.1 方法一:双指针

3.1.1 Java易懂版:

3.1.2 Java优化版:

3.1.3 C++版本:

3.1.4 Python版本:

3.1.5 Go版本:

四、复杂度分析

4.1 方法一:双指针


前言

这是力扣的392题,难度为简单,解题方案有很多种,本文讲解我认为最奇妙的一种。


一、题目描述

给定字符串 st ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace""abcde"的一个子序列,而"aec"不是)。

进阶:

如果有大量输入的 S,称作 S1, S2, ... , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?

示例 1:

输入:s = "abc", t = "ahbgdc"

输出:true


示例 2:

输入:s = "axc", t = "ahbgdc"

输出:false


提示:

    • 0 <= s.length <= 100
    • 0 <= t.length <= 10^4
    • 两个字符串都只由小写字符组成。

    二、题解

    2.1 方法一:双指针

    思路与算法:

    首先我们定义 i 和 j 两个指针,用指针 i 来遍历字符串 s ,用指针 j 来遍历字符串 t 。

    image.gif编辑

    当遍历完字符串 s 的时候退出循环,即 i 小于字符串 s 的长度。

    image.gif编辑

    循环内部条件:

      • 当指针 j 指向的索引已经等于字符串 t 的长度时,说明遍历结束,且 s 不是 t 的子序列,返回 false。
      • 当指针 i 指向的字符不等于指针 j 指向的字符,指针 j 后移。
      • 当指针 i 指向的字符等于指针 j 指向的字符,指针 i 和 j 同时后移。

      最后遍历完字符串 s 的时候退出循环,则代表 s 是 t 的子序列,返回true。


      三、代码

      3.1 方法一:双指针

      3.1.1 Java易懂版:

      class Solution {
          public boolean isSubsequence(String s, String t) {
              int i = 0, j = 0;
              int n1 = s.length(), n2 = t.length();
              while (i < n1) {
                  if (j == n2) return false;
                  if (s.charAt(i) != t.charAt(j)) {
                      j++;
                  } else if (s.charAt(i) == t.charAt(j)) {
                      i++;
                      j++;
                  }
              }
              return true;
          }
      }

      image.gif

      3.1.2 Java优化版:

      class Solution {
          public boolean isSubsequence(String s, String t) {
              int i = 0, j = 0;
              int n1 = s.length(), n2 = t.length();
              while (i < n1) {
                  if (j == n2) return false;
                  if (s.charAt(i) == t.charAt(j)) {
                      i++;
                  }
                  j++;
              }
              return true;
          }
      }

      image.gif

      3.1.3 C++版本:

      #include <string>
      using namespace std;
      class Solution {
      public:
          bool isSubsequence(string s, string t) {
              int i = 0, j = 0;
              int n1 = s.length(), n2 = t.length();
              while (i < n1) {
                  if (j == n2) return false;
                  if (s[i] == t[j]) {
                      i++;
                  }
                  j++;
              }
              return true;
          }
      };

      image.gif

      3.1.4 Python版本:

      class Solution {
          public boolean isSubsequence(String s, String t) {
              int i = 0, j = 0;
              int n1 = s.length(), n2 = t.length();
              while (i < n1) {
                  if (j == n2) return false;
                  if (s.charAt(i) == t.charAt(j)) {
                      i++;
                  }
                  j++;
              }
              return true;
          }
      }

      image.gif

      3.1.5 Go版本:

      func isSubsequence(s string, t string) bool {
          i, j := 0, 0
          n1, n2 := len(s), len(t)
          for i < n1 {
              if j == n2 {
                  return false
              }
              if s[i] == t[j] {
                  i++
              }
              j++
          }
          return true
      }

      image.gif


      四、复杂度分析

      4.1 方法一:双指针

        • 时间复杂度:O(n+m),其中 n 为 s 的长度,m 为 t 的长度。每次无论是匹配成功还是失败,都有至少一个指针发生右移,两指针能够位移的总距离为 n+m。
        • 空间复杂度:O(1)。
        目录
        相关文章
        |
        2月前
        |
        算法 数据处理 C语言
        C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
        本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
        58 1
        |
        2月前
        |
        机器学习/深度学习 算法 数据挖掘
        K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
        K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
        146 4
        |
        3月前
        |
        存储 人工智能 算法
        数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
        这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
        104 3
        数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
        |
        16天前
        |
        存储 运维 监控
        探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
        在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
        50 20
        |
        2月前
        |
        存储 算法 搜索推荐
        Python 中数据结构和算法的关系
        数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
        |
        2月前
        |
        数据采集 存储 算法
        Python 中的数据结构和算法优化策略
        Python中的数据结构和算法如何进行优化?
        |
        2月前
        |
        算法
        数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
        在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
        118 23
        |
        2月前
        |
        算法
        数据结构之蜜蜂算法
        蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
        64 20
        |
        2月前
        |
        并行计算 算法 测试技术
        C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
        C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
        69 1
        |
        2月前
        |
        机器学习/深度学习 算法 C++
        数据结构之鲸鱼算法
        鲸鱼算法(Whale Optimization Algorithm,WOA)是由伊朗研究员Seyedali Mirjalili于2016年提出的一种基于群体智能的全局优化算法,灵感源自鲸鱼捕食时的群体协作行为。该算法通过模拟鲸鱼的围捕猎物和喷出气泡网的行为,结合全局搜索和局部搜索策略,有效解决了复杂问题的优化需求。其应用广泛,涵盖函数优化、机器学习、图像处理等领域。鲸鱼算法以其简单直观的特点,成为初学者友好型的优化工具,但同时也存在参数敏感、可能陷入局部最优等问题。提供的C++代码示例展示了算法的基本实现和运行过程。
        62 0