API入门项目项目收集GitHub上热门项目的信息

简介: API是网站的一部分,在学术领域中常用于获取数据信息。如果我们想要获取某个网站上的一些信息,可以使用API请求数据,然后对这些数据进行处理和可视化,以便更好地理解和分析数据。

本次实验中,我们将使用API调用GitHub上星级最高的Python项目信息,并使用Plotly生成交互式的可视化图表。这些数据是实时更新的,因此可以提高数据的可用性和准确性。

通过这种方式,我们可以更加深入地了解Python编程社区,探索最受欢迎的Python项目,并了解开发者们正在关注和使用的技术。这有助于我们更好地理解Python编程生态系统,并为未来的研究和开发提供有价值的参考。

import requests#导入request模块
# 调用API并储存返回的响应
url = 'https://api.github.com/search/repositories?q=language:python&sort=stars'
headers = {
   
   'Accept': 'application/vnd.github.v3+json'}#因为版本往往不一样,我们指定使用这个我们指定的API
r = requests.get(url, headers=headers)#用函数调用API
print(f"Status code: {r.status_code}")
#将响应赋给response_dict
response_dict= r.json()
#API返回的Json信息储存在response_dict
print (response_dict.keys())
#打印出来看看

https://api.github.com/search/repositories
关于这个地址,开头的https://api.github.com/是把请求发送到GitHub网站,接下里search是搜索,对象是所有的仓库repositories,q表示查询,=表示开始指定查询language:python是值要获取语言为python的信息,最后&sort=stars指定将项目按星排序

打印出来后是这样子的:状态码为200,响应字典只有三个键:['total_count', 'incomplete_results', 'items']

Status code: 200
dict_keys(['total_count', 'incomplete_results', 'items'])

import requests
url = 'https://api.github.com/search/repositories?q=language:python&sort=stars'
headers = {
   
   'Accept': 'application/vnd.github.v3+json'}
r = requests.get(url, headers=headers)
print(f"Status code: {r.status_code}")
response_dict= r.json()

print(f"Total repositories: {response_dict['total_count']}")

# 探索全部仓库的信息
repo_dicts = response_dict['items']#打印与total_count相关的值,它指出了GitHub共有多少个仓库
print(f"Repositories returned: {len(repo_dicts)}")#将字典储存在repo_dicts

#我们可以来看下第一个仓库
repo_dict=repo_dicts[0]
print(f"\nKeys:{len(repo_dict)}")
for key in sorted(repo_dict.keys()):
     print(key)

#我们来提取一些repo_dict中于一些键相关联的值

这段代码使用了requests库来发送GET请求获取GitHub上星级最高的Python项目信息。通过指定URL和请求头部信息,我们可以向GitHub的API发送请求并获取响应。

首先,定义了API的URL地址为https://api.github.com/search/repositories?q=language:python&sort=stars,并设置了Accept请求头部为application/vnd.github.v3+json,以便获取适合的响应格式。

使用requests.get()方法发送GET请求,并将返回的响应对象赋值给变量r。

通过r.status_code可以打印出响应状态码,用于检查请求是否成功。

接下来使用r.json()方法将响应转换为JSON格式,并将其存储在response_dict字典中。

通过访问response_dict['total_count']可以获取到GitHub上Python仓库的总数量,并将其打印出来。

然后通过response_dict['items']获取到所有仓库的详细信息,并将其存储在repo_dicts列表中。

通过访问repo_dicts[0]可以获取第一个仓库的详细信息,并将其存储在repo_dict字典中。

最后,使用循环遍历repo_dict字典的键,并将其按照字母顺序排序后打印出来,以便查看仓库信息的键值对。

通过这段代码,我们可以获取到GitHub上星级最高的Python项目的信息,并进一步探索这些项目的详细信息。

这个是打印出来的值,我们可以从这里了解到实际出来的数据
Status code: 200
Total repositories: 6622696
Repositories returned: 30

Keys:74
archive_url
archived
assignees_url
太多了,跳过一部分
watchers
watchers_count

现在我们来提取一些repo_dict中于一些键相关联的值

import requests
url = 'https://api.github.com/search/repositories?q=language:python&sort=stars'
headers = {
   
   'Accept': 'application/vnd.github.v3+json'}
r = requests.get(url, headers=headers)
print(f"Status code: {r.status_code}")
response_dict= r.json()
print(f"Total repositories: {response_dict['total_count']}")
repo_dicts = response_dict['items']
print(f"Repositories returned: {len(repo_dicts)}")

repo_dict=repo_dicts[0]
#我们来提取一些repo_dict中于一些键相关联的值
print("\nSelected information about each repository:")

print(f"Name: {repo_dict['name']}")#人名
print(f"Owner: {repo_dict['owner']['login']}")
print(f"Stars: {repo_dict['stargazers_count']}")#获得了多少个星
print(f"Repository: {repo_dict['html_url']}")
print(f"Created: {repo_dict['created_at']}")#项目创建的时间
print(f"Updated: {repo_dict['updated_at']}")#最后一次更新的时间
print(f"Description: {repo_dict['description']}")

这段代码对获取的每个仓库的信息进行了进一步提取和打印。

首先,从repo_dicts中选择第一个仓库,并将其详细信息存储在repo_dict字典中。

然后,通过访问repo_dict字典的特定键,如name、owner、stargazers_count、html_url、created_at、updated_at和description,分别提取并打印了仓库的名称、所有者、星标数量、仓库链接、创建时间、最后更新时间和描述信息。

这样我们就可以逐个提取每个仓库的相关信息,并进行打印输出,以便进一步了解GitHub上星级最高的Python项目的详细情况。

结果就就是下面这样子:
Status code: 200
Total repositories: 6618376
Repositories returned: 30

Selected information about each repository:
Name: system-design-primer
Owner: donnemartin
Stars: 119890
Repository: https://github.com/donnemartin/system-design-primer
Created: 2017-02-26T16:15:28Z
Updated: 2021-01-31T02:19:49Z
Description: Learn how to design large-scale systems. Prep for the system design interview. Includes Anki flashcards.

Process finished with exit code 0

理清了数据后,那么我们就可以总体开始了

import requests

from plotly.graph_objs import Bar#导入bar类
from plotly import offline#导入offline模块

# Make an API call and store the response.
url = 'https://api.github.com/search/repositories?q=language:python&sort=stars'
headers = {
   
   'Accept': 'application/vnd.github.v3+json'}
r = requests.get(url, headers=headers)
print(f"Status code: {r.status_code}")

# 处理结果.
response_dict = r.json()
repo_dicts = response_dict['items']
repo_links, stars, labels = [], [], []#创建三个空列表用来存储我们要用的数据
for repo_dict in repo_dicts:#遍历repo_dicts中的所有的字典,打印项目的名称、所有者、星级等信息。
    repo_name = repo_dict['name']
    repo_url = repo_dict['html_url']
    repo_link = f"<a href='{repo_url}'>{repo_name}</a>"
    repo_links.append(repo_link)

    stars.append(repo_dict['stargazers_count'])

    owner = repo_dict['owner']['login']
    description = repo_dict['description']
    label = f"{owner}<br />{description}"
    labels.append(label)


#开始可视化,定义列表data
data = [{
   
   
    'type': 'bar',
    'x': repo_links,
    'y': stars,
    'hovertext': labels,
    'marker': {
   
   
        'color': 'rgb(60, 100, 150)',
        'line': {
   
   'width': 1.5, 'color': 'rgb(25, 25, 25)'}
    },
    'opacity': 0.6,
}]
#使用字典定义表格的布局
my_layout = {
   
   
    'title': 'Most-Starred Python Projects on GitHub',
    'titlefont': {
   
   'size': 28},
    'xaxis': {
   
   
        'title': 'Repository',
        'titlefont': {
   
   'size': 24},
        'tickfont': {
   
   'size': 14},
    },
    'yaxis': {
   
   
        'title': 'Stars',
        'titlefont': {
   
   'size': 24},
        'tickfont': {
   
   'size': 14},
    },

}

fig = {
   
   'data': data, 'layout': my_layout}
offline.plot(fig, filename='python_repos.html')

这段代码使用了Plotly库来创建一个条形图,展示GitHub上最受欢迎的Python项目的星级情况。

首先,通过发送API请求获取GitHub上的Python项目信息,并将结果存储在response_dict中。

然后,从每个项目的字典中提取项目名称、项目链接、星级数量、所有者和描述信息,并分别存储在repo_links、stars和labels列表中。

接下来,定义了一个字典data,其中包含了条形图的相关信息,如x轴数据为项目链接,y轴数据为星级数量,hovertext为项目所有者和描述信息。同时,设置了条形图的颜色、透明度和线宽等属性。

然后,定义了一个布局字典my_layout,其中包含了条形图的标题、x轴和y轴的标题和字体大小等设置。

最后,将数据和布局传递给fig字典,并使用offline.plot()函数将图表保存为HTML文件。

运行代码后,将生成一个名为python_repos.html的文件,可以在浏览器中打开该文件,查看GitHub上最受欢迎的Python项目的星级情况条形图。

最后我们可以生成一个可视化的html文件在浏览器打开
截屏2023-12-27 下午8.22.51.png

相关文章
|
1月前
|
开发框架 .NET API
RESTful API 设计与实现:C# 开发者的一分钟入门
【10月更文挑战第5天】本文从零开始,介绍了如何使用 C# 和 ASP.NET Core 设计并实现一个简单的 RESTful API。首先解释了 RESTful API 的概念及其核心原则,然后详细说明了设计 RESTful API 的关键步骤,包括资源识别、URI 设计、HTTP 方法选择、状态码使用和错误处理。最后,通过一个用户管理 API 的示例,演示了如何创建项目、定义模型、实现控制器及运行测试,帮助读者掌握 RESTful API 的开发技巧。
63 7
|
1月前
|
编解码 Oracle Java
java9到java17的新特性学习--github新项目
本文宣布了一个名为"JavaLearnNote"的新GitHub项目,该项目旨在帮助Java开发者深入理解和掌握从Java 9到Java 17的每个版本的关键新特性,并通过实战演示、社区支持和持续更新来促进学习。
79 3
|
2月前
|
JSON 搜索推荐 API
抖音商品详情API接口:获取商品信息的指南
抖音商品详情API接口由抖音开放平台提供,允许第三方应用访问抖音小店的商品数据,包括基本信息、价格、库存及用户评价等。其优势在于数据实时性、自动化处理、市场分析及个性化推荐。通过注册账号、获取API密钥、阅读文档和构建请求,用户可高效获取商品信息,提升运营效率。未来,该接口将在电商领域发挥更大作用。
|
14天前
|
JSON 数据挖掘 API
电商信息指南:API接口淘宝关键词、店铺所有商品获取
要获取淘宝关键词商品数据和店铺所有商品的API接口,需先注册淘宝开放平台账号并创建应用,获取API密钥。接着,使用密钥获取访问令牌,详细阅读API文档,构造并发送API请求,解析响应数据。特别地,使用`item_search_shop`接口可获取店铺内所有商品信息。
|
27天前
|
JSON 安全 API
抖音店铺商品信息的 API
抖音店铺商品信息的 API 主要用于获取商品的详细信息,包括基本信息、属性、库存、评价、推广信息等。开发者需注册账号、申请权限、阅读文档、发送请求并处理响应。此外,还提供商品搜索和管理接口,帮助商家优化商品展示和管理订单,提高运营效率。使用时需遵守平台规则,确保数据安全和合法性。
|
1月前
|
Prometheus 监控 Cloud Native
调用淘宝 API 时如何处理错误信息?
调用淘宝API时,需熟悉其错误码体系,处理客户端(如参数错误、权限不足)和服务器(如内部错误、网络问题)错误,编写错误处理逻辑,并进行充分测试与监控,确保API调用稳定可靠。
|
15天前
|
编解码 API 数据库
商品详情 API 接口的返回结果通常包含哪些信息?
商品详情API接口返回的信息涵盖多个方面,主要包括商品基本信息(ID、标题、图片、价格、库存、SKU)、详细描述与规格参数、销售与评价信息(销量、好评率、评价内容、促销活动)、物流与售后信息(发货地、运费模板、退换货政策、保修期限)及店铺信息(ID、名称、评分)和关联推荐信息(相似商品、搭配商品)。这些信息有助于用户全面了解商品并做出购买决策。
|
18天前
|
Java 测试技术 API
如何利用 1688 API 接口获取商品信息?
利用 1688 API 获取商品信息的步骤包括:注册开发者账号并创建应用,申请 API 权限,获取 API 密钥,了解 API 文档,编写代码调用 API,并进行测试与调试。最终在生产环境中上线应用,确保合法合规使用。
|
1月前
|
机器学习/深度学习 算法 API
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
|
27天前
|
监控 供应链 搜索推荐
获取店铺商品信息的 API 接口有哪些?
本文介绍了五个常用的电商平台获取店铺商品信息的 API 接口:淘宝、京东、1688、拼多多和慢慢买。每个接口的功能、使用方式及优势各不相同,涵盖商品详情、价格、销量、库存等信息,适用于商品分析、竞品分析、价格监控等场景,帮助商家提升业务效率和市场竞争力。
下一篇
无影云桌面