Python大数据之PySpark(四)SparkBase&Core

简介: Python大数据之PySpark(四)SparkBase&Core

SparkBase&Core

  • 学习目标
  • 掌握SparkOnYarn搭建
  • 掌握RDD的基础创建及相关算子操作
  • 了解PySpark的架构及角色

环境搭建-Spark on YARN

  • Yarn 资源调度框架,提供如何基于RM,NM,Continer资源调度
  • Yarn可以替换Standalone结构中Master和Worker来使用RM和NM来申请资源

SparkOnYarn本质

  • Spark计算任务通过Yarn申请资源,SparkOnYarn
  • 将pyspark文件,经过Py4J(Python for java)转换,提交到Yarn的JVM中去运行

修改配置

  • 思考,如何搭建SparkOnYarn环境?
  • 1-需要让Spark知道Yarn(yarn-site.xml)在哪里?
  • 在哪个文件下面更改?spark-env.sh中增加YARN_CONF_DIR的配置目录

  • 2-修改Yan-site.xml配置,管理内存检查,历史日志服务器等其他操作
  • 修改配置文件

  • 3-需要配置历史日志服务器
  • 需要实现功能:提交到Yarn的Job可以查看19888的历史日志服务器可以跳转到18080的日志服务器上
  • 因为19888端口无法查看具体spark的executor后driver的信息,所以搭建历史日志服务器跳转
  • 3-需要准备SparkOnYarn的需要Jar包,配置在配置文件中
  • 在spark-default.conf中设置spark和yarn映射的jar包文件夹(hdfs)

  • 注意,在最终执行sparkonyarn的job的时候一定重启Hadoop集群,因为更改相关yarn配置
  • 4-执行SparkOnYarn
  • 这里并不能提供交互式界面,只有spark-submit(提交任务)
#基于SparkOnyarn提交任务
bin/spark-submit \
--master yarn \
/export/server/spark/examples/src/main/python/pi.py  \
10

小结

SparKOnYarn:使用Yarn提供了资源的调度和管理工作,真正执行计算的时候Spark本身

Master和Worker的结构是Spark Standalone结构 使用Master申请资源,真正申请到是Worker节点的Executor的Tasks线程

原来Master现在Yarn替换成ResourceManager,现在Yarn是Driver给ResourceManager申请资源

原来Worker现在Yarn替换为Nodemanager,最终提供资源的地方时hiNodeManager的Continer容器中的tasks

安装配置:

1-让spark知道yarn的位置

2-更改yarn的配置,这里需要开启历史日志服务器和管理内存检查

3-整合Spark的历史日志服务器和Hadoop的历史日志服务器,效果:通过8088的yarn的http://node1:8088/cluster跳转到18080的spark的historyserver上

4-SparkOnYarn需要将Spark的jars目录下的jar包传递到hdfs上,并且配置spark-default.conf让yarn知晓配置

5-测试,仅仅更换–master yarn

部署模式

#如果启动driver程序是在本地,称之为client客户端模式,现象:能够在client端看到结果

#如果在集群模式中的一台worker节点上启动driver,称之为cluser集群模式,现象:在client端看不到结果

  • client

  • 首先 client客户端提交spark-submit任务,其中spark-submit指定–master资源,指定–deploy-mode模式
  • 由启动在client端的Driver申请资源,
  • 交由Master申请可用Worker节点的Executor中的Task线程
  • 一旦申请到Task线程,将资源列表返回到Driver端
  • Driver获取到资源后执行计算,执行完计算后结果返回到Driver端
  • 由于Drivr启动在client端的,能够直接看到结果
  • 实验:
#基于Standalone的脚本—部署模式client
#driver申请作业的资源,会向–master集群资源管理器申请
#执行计算的过程在worker中,一个worker有很多executor(进程),一个executor下面有很多task(线程)
bin/spark-submit
–master spark://node1:7077
–deploy-mode client
–driver-memory 512m
–executor-memory 512m
/export/server/spark/examples/src/main/python/pi.py
10


  • cluster

  • 首先 client客户端提交spark-submit任务,其中spark-submit指定–master资源,指定–deploy-mode模式
  • 由于指定cluster模式,driver启动在worker节点上
  • 由driver申请资源,由Master返回worker可用资源列表
  • 由Driver获取到资源执行后续计算
  • 执行完计算的结果返回到Driver端,
  • 由于Driver没有启动在客户端client端,在client看不到结果
  • 如何查看数据结果?
  • 需要在日志服务器上查看,演示
  • 实验:
SPARK_HOME=/export/server/spark
${SPARK_HOME}/bin/spark-submit
–master spark://node1.itcast.cn:7077,node2.itcast.cn:7077
–deploy-mode cluster
–driver-memory 512m
–executor-memory 512m
–num-executors 1
–total-executor-cores 2
–conf “spark.pyspark.driver.python=/root/anaconda3/bin/python3”
–conf “spark.pyspark.python=/root/anaconda3/bin/python3”
${SPARK_HOME}/examples/src/main/python/pi.py
10



         

         


         
  • 注意事项:
  • 通过firstpyspark.py写的wordcount的代码,最终也是转化为spark-submit任务提交
  • 如果是spark-shell中的代码最终也会转化为spark-submit的执行脚本
  • 在Spark-Submit中可以提交driver的内存和cpu,executor的内存和cpu,–deploy-mode部署模式

Spark On Yarn两种模式

  • Spark on Yarn两种模式
  • –deploy-mode client和cluster
  • Yarn的回顾:Driver------AppMaster------RM-----NodeManager—Continer----Task
  • client模式
#deploy-mode的结构
SPARK_HOME=/export/server/spark
${SPARK_HOME}/bin/spark-submit
–master yarn
–deploy-mode client
–driver-memory 512m
–driver-cores 2
–executor-memory 512m
–executor-cores 1
–num-executors 2
–queue default
${SPARK_HOME}/examples/src/main/python/pi.py
10


#瘦身
SPARK_HOME=/export/server/spark
${SPARK_HOME}/bin/spark-submit
–master yarn
–deploy-mode client
${SPARK_HOME}/examples/src/main/python/pi.py
10



         

         

  • 原理:

  • 1-启动Driver
  • 2-由Driver向RM申请启动APpMaster
  • 3-由RM指定NM启动AppMaster
  • 4-AppMaster应用管理器申请启动Executor(资源的封装,CPU,内存)
  • 5-由AppMaster指定启动NodeManager启动Executor
  • 6-启动Executor进程,获取任务计算所需的资源
  • 7-将获取的资源反向注册到Driver
  • 由于Driver启动在Client客户端(本地),在Client端就可以看到结果3.1415
  • 8-Driver负责Job和Stage的划分[了解]
  • 1-执行到Action操作的时候会触发Job,不如take
  • 2-接下来通过DAGscheduler划分Job为Stages,为每个stage创建task
  • 3-接下来通过TaskScheduler将每个Stage的task分配到每个executor去执行
  • 4-结果返回到Driver端,得到结果
  • cluster:
  • 作业:
${SPARK_HOME}/bin/spark-submit
–master yarn
–deploy-mode cluster
–driver-memory 512m
–executor-memory 512m
–executor-cores 1
–num-executors 2
–queue default
–conf “spark.pyspark.driver.python=/root/anaconda3/bin/python3”
–conf “spark.pyspark.python=/root/anaconda3/bin/python3”
${SPARK_HOME}/examples/src/main/python/pi.py
10
#瘦身
${SPARK_HOME}/bin/spark-submit
–master yarn
–deploy-mode cluster
${SPARK_HOME}/examples/src/main/python/pi.py
10



         

>>*



原理:

扩展阅读:两种模式详细流程

扩展阅读-Spark关键概念

扩展阅读:Spark集群角色

  • Executor通过启动多个线程(task)来执行对RDD的partition进行并行计算
  • 也就是执行我们对RDD定义的例如map、flatMap、reduce等算子操作。
  • Driver:启动SparkCOntext的地方称之为Driver,Driver需要向CLusterManager申请资源,同时获取到资源后会划分Stage提交Job
  • Master:l 主要负责资源的调度和分配,并进行集群的监控等职责;
  • worker:一个是用自己的内存存储RDD的某个或某些partition;另一个是启动其他进程和线程(Executor),对RDD上的partition进行并行的处理和计算
  • Executor:一个Worker****(NodeManager)****上可以运行多个Executor,Executor通过启动多个线程(task)来执行对RDD的partition进行并行计算
  • 每个Task线程都会拉取RDD的每个分区执行计算,可以执行并行计算

扩展阅读:Spark-shell和Spark-submit

  • bin/spark-shell --master spark://node1:7077 --driver-memory 512m --executor-memory 1g
  • # SparkOnYarn组织参数
–driver-memory MEM 默认1g,Memory for driver (e.g. 1000M, 2G) (Default: 1024M). Driver端的内存
–driver-cores NUM 默认1个,Number of cores used by the driver, only in cluster mode(Default: 1).
–num-executors NUM 默认为2个,启动多少个executors
–executor-cores NUM 默认1个,Number of cores used by each executor,每个executou需要多少cpucores
–executor-memory 默认1G,Memory per executor (e.g. 1000M, 2G) (Default: 1G) ,每个executour的内存
–queue QUEUE_NAME The YARN queue to submit to (Default: “default”).
bin/spark-submit --master yarn \
–deploy-mode cluster \
–driver-memory 1g \
–driver-cores 2 \
–executor-cores 4 \
–executor-memory 512m \
–num-executors 10 \
path/XXXXX.py \
10

扩展阅读:命令参数

–driver-memory MEM 默认1g,Memory for driver (e.g. 1000M, 2G) (Default: 1024M). Driver端的内存
–driver-cores NUM 默认1个,Number of cores used by the driver, only in cluster mode(Default: 1).
–num-executors NUM 默认为2个,启动多少个executors
–executor-cores NUM 默认1个,Number of cores used by each executor,每个executou需要多少cpucores
–executor-memory 默认1G,Memory per executor (e.g. 1000M, 2G) (Default: 1G) ,每个executour的内存
–queue QUEUE_NAME The YARN queue to submit to (Default: “default”).

MAIN函数代码执行

  • Driver端负责申请资源包括关闭资源,负责任务的Stage的切分
  • Executor执行任务的计算
  • 一个Spark的Application有很多Job
  • 一个Job下面有很多Stage
  • 一个Stage有很多taskset
  • 一个Taskset有很多task任务构成的额
  • 一个rdd分task分区任务都需要executor的task线程执行计算

再续 Spark 应用

[了解]PySpark角色分析

  • Spark的任务执行的流程
  • 面试的时候按照Spark完整的流程执行即可
  • Py4J–Python For Java–可以在Python中调用Java的方法
  • 因为Python作为顶层的语言,作为API完成Spark计算任务,底层实质上还是Scala语言调用的
  • 底层有Python的SparkContext转化为Scala版本的SparkContext
  • ****为了能在Executor端运行用户定义的Python函数或Lambda表达****式,则需要为每个Task单独启一个Python进程,通过socket通信方式将Python函数或Lambda表达式发给Python进程执行。

[了解]PySpark架构


相关实践学习
简单用户画像分析
本场景主要介绍基于海量日志数据进行简单用户画像分析为背景,如何通过使用DataWorks完成数据采集 、加工数据、配置数据质量监控和数据可视化展现等任务。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
22天前
|
分布式计算 Hadoop 大数据
大数据技术与Python:结合Spark和Hadoop进行分布式计算
【4月更文挑战第12天】本文介绍了大数据技术及其4V特性,阐述了Hadoop和Spark在大数据处理中的作用。Hadoop提供分布式文件系统和MapReduce,Spark则为内存计算提供快速处理能力。通过Python结合Spark和Hadoop,可在分布式环境中进行数据处理和分析。文章详细讲解了如何配置Python环境、安装Spark和Hadoop,以及使用Python编写和提交代码到集群进行计算。掌握这些技能有助于应对大数据挑战。
|
5天前
|
分布式计算 DataWorks 关系型数据库
MaxCompute产品使用合集之我需要在MaxCompute客户端添加Python第三方包,我该怎么操作
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
15天前
|
缓存 大数据 Python
python利用代理IP分析大数据
python利用代理IP分析大数据
|
1月前
|
机器学习/深度学习 分布式计算 数据挖掘
阿里云 MaxCompute MaxFrame 开启免费邀测,统一 Python 开发生态
阿里云 MaxCompute MaxFrame 正式开启邀测,统一 Python 开发生态,打破大数据及 AI 开发使用边界。
380 1
|
2月前
|
机器学习/深度学习 人工智能 数据可视化
基于Python的数据可视化技术在大数据分析中的应用
传统的大数据分析往往注重数据处理和计算,然而数据可视化作为一种重要的技术手段,在大数据分析中扮演着至关重要的角色。本文将介绍如何利用Python语言中丰富的数据可视化工具,结合大数据分析,实现更直观、高效的数据展示与分析。
|
2月前
|
算法 大数据 数据挖掘
python数据分析——大数据伦理风险分析
大数据伦理风险分析在当前数字化快速发展的背景下显得尤为重要。随着大数据技术的广泛应用,企业、政府以及个人都在不断地产生、收集和分析海量数据。然而,这些数据的利用也带来了诸多伦理风险,如隐私泄露、数据滥用、算法偏见等。因此,对大数据伦理风险进行深入分析,并采取相应的防范措施,对于保障数据安全、维护社会公平正义具有重要意义。
54 0
|
2月前
|
存储 大数据 数据挖掘
python数据分析——大数据和云计算
大数据和云计算作为当代信息技术的两大核心驱动力,正在以前所未有的速度改变着我们的生活、工作和思维方式。它们不仅为各行各业的创新提供了强大的技术支持,更是推动了整个社会的数字化转型。 从大数据的角度来看,它的核心价值在于通过对海量数据的收集、存储、分析和挖掘,发现其中的关联性和趋势,从而为决策提供更为科学、精准的依据。无论是商业领域的市场预测、消费者行为分析,还是公共服务领域的城市规划、交通管理,大数据都发挥着不可或缺的作用。同时,随着物联网、传感器等技术的普及,大数据的来源和种类也在不断扩展,这使得我们能够更全面地认识世界,把握规律。
51 0
|
9天前
|
存储 人工智能 数据处理
Python:编程的艺术与科学的完美交融
Python:编程的艺术与科学的完美交融
14 1
|
4天前
|
测试技术 调度 索引
python编程中常见的问题
【4月更文挑战第23天】
16 2
|
5天前
|
网络协议 算法 网络架构
Python网络编程之udp编程、黏包以及解决方案、tcpserver
Python网络编程之udp编程、黏包以及解决方案、tcpserver

热门文章

最新文章