《Python金融大数据分析》一导读

简介: 不久以前,在金融行业,Python作为一种编程语言和平台技术还被视为异端。相比之下,2014年有许多大型金融机构——如美国银行、美林证券的“石英”项目或者摩根大通的“雅典娜”项目——战略性地使用了Python和其他既定的技术,构建、改进和维护其核心IT系统。


w1

前 言

Python金融大数据分析
不久以前,在金融行业,Python作为一种编程语言和平台技术还被视为异端。相比之下,2014年有许多大型金融机构——如美国银行、美林证券的“石英”项目或者摩根大通的“雅典娜”项目——战略性地使用了Python和其他既定的技术,构建、改进和维护其核心IT系统。众多大大小小的对冲基金也大量使用Python的功能,进行高效的金融应用程序开发和金融分析工作。

同样,当今许多金融工程硕士课程(或者授予类似学位的课程)也使用Python作为核心语言之一,教授计量金融理论与可执行计算机代码之间的转换方法。针对金融专业人士的教育项目和培训也越来越多地在课程中加入Python。有些课程将它作为主要实现语言。

Python最近取得这样的成功,而且在未来似乎还会继续下去,这有许多原因。其中包括它的语法、Python开发人员可用的科学生态系统和数据分析库、易于和几乎所有其他技术集成,以及其开源地位(更多这方面的深入探讨请参见第1章)。

因此,有许多好的书籍,从不同角度和焦点传授Python。本书是最先介绍和传授Python金融应用的书籍之一,特别是将Python用于计量金融学和金融分析。书中采用的方法很实用,实现和说明先于理论细节,通常将焦点更多地放在大局上,而非某些类或者函数晦涩难懂的参数化选项。

本书的大部分是在基于浏览器的强大交互式环境IPython Notebook(在第2章中有更详细的介绍)中编写的,因此有可能为读者提供本书中几乎所有例子的可执行、交互式版本。

希望立即开始使用完备的交互式Python(以及R和Julia)金融分析环境的读者,应该前往http://oreilly.quant-platform.com,尝试Python Quant平台(结合本书提供的IPython Notebook文件)。你还应该关注基于Python的金融分析库DX analytics(http://dx-analytics.com)。我的另一本书《Derivatives Analytics with Python》(Wiley Finance)更详细地介绍高级衍生品分析的理论和数值方法,书中也提供了丰富而易用的Python代码。进一步的材料,特别是有关Python计量金融学应用的幻灯片及视频,可以在我的私人网站上找到(http://hilpisch.com)。

目 录

第1部分 Python与金融
第1章 为什么将Python用于金融
1.1  Python 是什么
1.2  金融中的科技
1.3  用于金融的Python
1.4  结语
1.5  延伸阅读
第2章 基础架构和工具
2.1  Python部署
2.2  结语
2.3  延伸阅读
第3章 入门示例
第2部分 金融分析和开发
第4章 数据类型和结构
第5章 数据可视化
第6章 金融时间序列
第7章 输入/输出操作
第8章 高性能的Python
第9章 数学工具
第10章 推断统计学
第11章 统计学
第12章 Excel集成
第13章 面向对象和图形用户界面
第14章 Web集成
第3部分 衍生品分析库
第15章 估值框架
第16章 金融模型的模拟
第17章 衍生品估值
第18章 投资组合估值
第19章 波动率期权

相关文章
|
1月前
|
数据可视化 搜索推荐 大数据
基于python大数据的北京旅游可视化及分析系统
本文深入探讨智慧旅游系统的背景、意义及研究现状,分析其在旅游业中的作用与发展潜力,介绍平台架构、技术创新、数据挖掘与服务优化等核心内容,并展示系统实现界面。
|
28天前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
1月前
|
数据采集 数据可视化 安全
基于python大数据的天气可视化分析预测系统
本研究探讨基于Python的天气预报数据可视化系统,旨在提升天气数据获取、分析与展示的效率与准确性。通过网络爬虫技术快速抓取实时天气数据,并运用数据可视化技术直观呈现天气变化趋势,为公众出行、农业生产及灾害预警提供科学支持,具有重要的现实意义与应用价值。
|
1月前
|
数据可视化 数据挖掘 大数据
基于python大数据的水文数据分析可视化系统
本研究针对水文数据分析中的整合难、分析单一和可视化不足等问题,提出构建基于Python的水文数据分析可视化系统。通过整合多源数据,结合大数据、云计算与人工智能技术,实现水文数据的高效处理、深度挖掘与直观展示,为水资源管理、防洪减灾和生态保护提供科学决策支持,具有重要的应用价值和社会意义。
|
1月前
|
数据采集 搜索推荐 数据可视化
基于python大数据的商品数据可视化及推荐系统
本系统基于Python、Django与ECharts,构建大数据商品可视化及推荐平台。通过爬虫获取商品数据,利用可视化技术呈现销售趋势与用户行为,结合机器学习实现个性化推荐,助力电商精准营销与用户体验提升。
|
1月前
|
数据采集 数据可视化 数据挖掘
基于python大数据的nba球员可视化分析系统
本课题围绕NBA球员数据分析与可视化展开,探讨如何利用大数据与可视化技术提升篮球运动的表现评估与决策支持能力。研究涵盖数据采集、处理与可视化呈现,结合SQLite、Flask、Echarts等技术构建分析系统,助力球队训练、战术制定及球迷观赛体验提升。
|
2月前
|
存储 数据挖掘 大数据
基于python大数据的用户行为数据分析系统
本系统基于Python大数据技术,深入研究用户行为数据分析,结合Pandas、NumPy等工具提升数据处理效率,利用B/S架构与MySQL数据库实现高效存储与访问。研究涵盖技术背景、学术与商业意义、国内外研究现状及PyCharm、Python语言等关键技术,助力企业精准营销与产品优化,具有广泛的应用前景与社会价值。
|
1月前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。
|
1月前
|
机器学习/深度学习 搜索推荐 算法
基于python大数据的口红商品分析与推荐系统
本研究基于Python大数据技术,构建口红商品分析与推荐系统,旨在解决口红市场产品同质化与消费者选择困难问题。通过分析颜色、质地、价格等多维度数据及用户行为,实现个性化推荐,提升购物体验与品牌营销效率,推动美妆行业数字化转型,具有重要现实意义与市场价值。
|
1月前
|
机器学习/深度学习 搜索推荐 数据可视化
基于python大数据的音乐可视化与推荐系统
本研究基于Python实现音乐数据采集、清洗、分析与可视化,并结合协同过滤算法构建个性化推荐系统。通过Echarts展示音乐热度及用户偏好,提升用户体验,助力音乐产业智能化发展。

推荐镜像

更多