Docker【部署 05】docker使用tensorflow-gpu安装及调用GPU踩坑记录

简介: Docker【部署 05】docker使用tensorflow-gpu安装及调用GPU踩坑记录

1.安装tensorflow-gpu

Building wheels for collected packages: tensorflow-gpu
  Building wheel for tensorflow-gpu (setup.py): started
  Building wheel for tensorflow-gpu (setup.py): finished with status 'error'
  Running setup.py clean for tensorflow-gpu
  error: subprocess-exited-with-error
  × python setup.py bdist_wheel did not run successfully.
  │ exit code: 1
  ╰─> [18 lines of output]
      Traceback (most recent call last):
        File "<string>", line 2, in <module>
        File "<pip-setuptools-caller>", line 34, in <module>
        File "/tmp/pip-install-i6frcfa8/tensorflow-gpu_2cea358528754cc596c541f9c2ce45ca/setup.py", line 37, in <module>
          raise Exception(TF_REMOVAL_WARNING)
      Exception:
      =========================================================
      The "tensorflow-gpu" package has been removed!
      Please install "tensorflow" instead.
      Other than the name, the two packages have been identical
      since TensorFlow 2.1, or roughly since Sep 2019. For more
      information, see: pypi.org/project/tensorflow-gpu
      =========================================================
      [end of output]
  note: This error originates from a subprocess, and is likely not a problem with pip.
  ERROR: Failed building wheel for tensorflow-gpu
Failed to build tensorflow-gpu

Other than the name, the two packages have been identical since TensorFlow 2.1 也就是说安装2.1版本的已经自带GPU支持。

2.Docker使用GPU

不同型号的GPU及驱动版本有所区别,环境驱动及CUDA版本如下:

[root@localhost ~]# nvidia-smi
# 查询结果
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.27.04    Driver Version: 460.27.04    CUDA Version: 11.2     |
|-------------------------------+----------------------+----------------------+

2.1 Could not find cuda drivers

# 报错
I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.

在Docker容器中的程序无法识别CUDA环境变量,可以尝试以下步骤来解决这个问题:

  1. 检查CUDA版本:首先,需要确认宿主机上已经正确安装了CUDA。在宿主机上运行nvcc --version命令来检查CUDA版本。
  2. 使用NVIDIA Docker镜像:NVIDIA提供了一些预先配置好的Docker镜像,这些镜像已经包含了CUDA和其他必要的库。可以使用这些镜像作为Dockerfile的基础镜像。
  3. 设置环境变量:在Dockerfile中,可以使用ENV指令来设置环境变量。例如,如果CUDA安装在/usr/local/cuda目录下,可以添加以下行到Dockerfile中:ENV PATH /usr/local/cuda/bin:$PATH
  4. 使用nvidia-docker:nvidia-docker是一个用于运行GPU加速的Docker容器的工具。

检测CUDA版本是必要的,由于使用的是导出的镜像文件,2和3的方法无法使用,最终使用-e进行环境变量设置:

# 添加cuda的环境变量
-e PATH=/usr/local/cuda-11.2/bin:$PATH -e LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64:$LD_LIBRARY_PATH
# 启动命令
nvidia-docker run --name deepface --privileged=true --restart=always --net="host" -e PATH=/usr/local/cuda-11.2/bin:$PATH -e LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64:$LD_LIBRARY_PATH -v /root/.deepface/weights/:/root/.deepface/weights/ -v /usr/local/cuda-11.2/:/usr/local/cuda-11.2/ -d deepface_image

2.2 was unable to find libcuda.so DSO

I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:168] retrieving CUDA diagnostic information for host: localhost.localdomain
I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:175] hostname: localhost.localdomain
I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:199] libcuda reported version is: NOT_FOUND: was unable to find libcuda.so DSO loaded into this program
I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:203] kernel reported version is: 460.27.4

在Linux环境下,Docker可以支持将宿主机上的目录挂载到容器里。这意味着,如果宿主机上的目录包含软链接,那么这些软链接也会被挂载到容器中。然而,需要注意的是,这些软链接指向的路径必须在Docker容器中是可访问的。也就是说,如果软链接指向的路径没有被挂载到Docker容器中,那么在容器中访问这个软链接可能会失败。

原文链接:https://blog.csdn.net/u013546508/article/details/88637434,当前环境下问题解决步骤:

# 1.查找 libcuda.so 文件位置
find / -name libcuda.so*
# 查找结果
/usr/lib/libcuda.so
/usr/lib/libcuda.so.1
/usr/lib/libcuda.so.460.27.04
/usr/lib64/libcuda.so
/usr/lib64/libcuda.so.1
/usr/lib64/libcuda.so.460.27.04
# 2.查看LD_LIBRARY_PATH
echo $LD_LIBRARY_PATH
# 查询结果
/usr/local/cuda/lib64
# 3.将64位的libcuda.so.460.27.04复制到LD_LIBRARY_PATH路径下【libcuda.so和libcuda.so.1都是软连接】
cp /usr/lib64/libcuda.so.460.27.04 /usr/local/cuda-11.2/lib64/
# 4.创建软连接
ln -s libcuda.so.460.27.04 libcuda.so.1
ln -s libcuda.so.1 libcuda.so

2.3 Could not find TensorRT&&Cannot dlopen some GPU libraries

I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
W tensorflow/core/common_runtime/gpu/gpu_device.cc:1960] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...

这个问题实际上是Docker镜像文件未安装TensorRT导致的,可以在Dockerfile里添加安装命令后重新构建镜像:

RUN pip install tensorrt -i https://pypi.tuna.tsinghua.edu.cn/simple

以下操作不推荐,进入容器进行安装:

# 1.查询容器ID
docker ps
# 2.在running状态进入容器
docker exec -it ContainerID /bin/bash
# 3.安装软件
pip install tensorrt -i https://pypi.tuna.tsinghua.edu.cn/simple
# 4.提交新的镜像【可以将新的镜像导出使用】
docker commit ContainerID imageName:version

安装后的现象:

root@localhost:/app# python
Python 3.8.18 (default, Sep 20 2023, 11:41:31)
[GCC 12.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
# 使用tensorflow报错
>>> import tensorflow as tf
2023-10-09 10:15:55.482545: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-10-09 10:15:56.498608: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
# 先导入tensorrt后使用tensorflow看我用
>>> import tensorrt as tr
>>> import tensorflow as tf
>>> tf.test.is_gpu_available()
WARNING:tensorflow:From <stdin>:1: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.
2023-10-09 10:16:41.452672: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1639] Created device /device:GPU:0 with 11389 MB memory:  -> device: 0, name: Tesla T4, pci bus id: 0000:2f:00.0, compute capability: 7.5
True

尝试解决,在容器启动要执行的py文件内加入以下代码,我将以下代码加入到app.py文件内:

import tensorrt as tr
import tensorflow as tf
if __name__ == "__main__":
    available = tf.config.list_physical_devices('GPU')
    print(f"available:{available}")

加入代码后的文件为:

# 3rd parth dependencies
import tensorrt as tr
import tensorflow as tf
from flask import Flask
from routes import blueprint
def create_app():
    available = tf.config.list_physical_devices('GPU')
    print(f"available:{available}")
    app = Flask(__name__)
    app.register_blueprint(blueprint)
    return app

启动容器:

nvidia-docker run --name deepface --privileged=true --restart=always --net="host" -e PATH=/usr/local/cuda-11.2/bin:$PATH -e LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64:$LD_LIBRARY_PATH -v /root/.deepface/weights/:/root/.deepface/weights/ -v /usr/local/cuda-11.2/:/usr/local/cuda-11.2/ -v /opt/xinan-facesearch-service-public/deepface/api/app.py:/app/app.py -d deepface_image

2.4 Could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED

E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:437] Could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED
E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:441] Memory usage: 1100742656 bytes free, 15843721216 bytes total.
E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:451] Possibly insufficient driver version: 460.27.4
W tensorflow/core/framework/op_kernel.cc:1828] OP_REQUIRES failed at conv_ops_impl.h:770 : UNIMPLEMENTED: DNN library is not found.

未安装cuDNN导致的问题,安装即可。

2.5 CuDNN library needs to have matching major version and equal or higher minor version

安装版本跟编译项目的版本不匹配,调整版本后成功使用GPU。

E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:425] Loaded runtime CuDNN library: 8.1.1 but source was compiled with: 8.6.0.  CuDNN library needs to have matching major version and equal or higher minor version. If using a binary install, upgrade your CuDNN library.  If building from sources, make sure the library loaded at runtime is compatible with the version specified during compile configuration.
相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
4天前
|
弹性计算 Ubuntu Linux
阿里云服务器一键安装Docker社区版教程,基于系统运维管理OOS
阿里云服务器一键安装Docker社区版教程,基于系统运维管理OOS自动化部署。支持Ubuntu 22.04/20.04、CentOS 7.7-7.9及Alibaba Cloud Linux 3.2104 LTS。前提条件:ECS实例需运行中且有公网。步骤:选择Docker扩展并安装,验证成功通过命令`docker -v`查看版本号。
115 78
|
18天前
|
NoSQL 关系型数据库 应用服务中间件
docker基础篇:安装tomcat
docker基础篇:安装tomcat
147 64
|
9天前
|
Ubuntu Linux 开发工具
docker 是什么?docker初认识之如何部署docker-优雅草后续将会把产品发布部署至docker容器中-因此会出相关系列文章-优雅草央千澈
Docker 是一个开源的容器化平台,允许开发者将应用程序及其依赖项打包成标准化单元(容器),确保在任何支持 Docker 的操作系统上一致运行。容器共享主机内核,提供轻量级、高效的执行环境。本文介绍如何在 Ubuntu 上安装 Docker,并通过简单步骤验证安装成功。后续文章将探讨使用 Docker 部署开源项目。优雅草央千澈 源、安装 Docker 包、验证安装 - 适用场景:开发、测试、生产环境 通过以上步骤,您可以在 Ubuntu 系统上成功安装并运行 Docker,为后续的应用部署打下基础。
docker 是什么?docker初认识之如何部署docker-优雅草后续将会把产品发布部署至docker容器中-因此会出相关系列文章-优雅草央千澈
|
7天前
|
NoSQL 关系型数据库 Redis
《docker高级篇(大厂进阶):1.Docker复杂安装详说》包括:安装mysql主从复制、安装redis集群
《docker高级篇(大厂进阶):1.Docker复杂安装详说》包括:安装mysql主从复制、安装redis集群
45 14
|
4天前
|
关系型数据库 MySQL 应用服务中间件
《docker基础篇:8.Docker常规安装简介》包括:docker常规安装总体步骤、安装tomcat、安装mysql、安装redis
《docker基础篇:8.Docker常规安装简介》包括:docker常规安装总体步骤、安装tomcat、安装mysql、安装redis
30 7
|
22天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
229 55
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
125 5
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
95 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
108 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
107 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型

热门文章

最新文章