两个使用 Pandas 读取异常数据结构 Excel 的方法,拿走不谢!

简介: 两个使用 Pandas 读取异常数据结构 Excel 的方法,拿走不谢!

通常情况下,我们使用 Pandas 来读取 Excel 数据,可以很方便的把数据转化为 DataFrame 类型。但是现实情况往往很骨干,当我们遇到结构不是特别良好的 Excel 的时候,常规的 Pandas 读取操作就不怎么好用了,今天我们就来看两个读取非常规结构 Excel 数据的例子

本文使用的测试 Excel 内容如下


文末可以获取到该文件

指定列读取

一般情况下,我们使用 read_excel 函数读取 Excel 数据时,都是默认从第 A 列开始读取的,但是对于某些 Excel 数据,往往不是从第 A 列就有数据的,此时我们需要参数 usecols 来进行规避处理

比如上面的 Excel 数据,如果我们直接使用 read_excel(src_file) 读取,会得到如下结果

我们得到了很多未命名的列以及很多我们根本不需要的列数据

此时我们可以通过 usecols 来指定读取哪些列数据

from pathlib import Path
src_file = Path.cwd() /  'shipping_tables.xlsx'
df = pd.read_excel(src_file, header=1, usecols='B:F')


可以看到生成的 DataFrame 中只包含我们需要的数据,特意排除了 notes 列和 date 字段

usecols 可以接受一个 Excel 列的范围,例如 B:F 并仅读取这些列,header 参数需要一个定义标题列的整数,它的索引从0开始,所以我们传入 1,也就是 Excel 中的第 2 行

我们也可以将列定义为数字列表

df = pd.read_excel(src_file, header=1, usecols=[1,2,3,4,5])

也可以通过列名称来选择所需的列数据

df = pd.read_excel(
    src_file,
    header=1,
    usecols=['item_type', 'order id', 'order date', 'state', 'priority'])

这种做法在列的顺序改变但是列的名称不变的时候非常有用

最后,usecols 还可以接受一个可调用的函数

def column_check(x):
    if 'unnamed' in x.lower():
        return False
    if 'priority' in x.lower():
        return False
    if 'order' in x.lower():
        return True
    return True
df = pd.read_excel(src_file, header=1, usecols=column_check)

该函数将按名称解析每一列,并且必须为每一列返回 True 或 False

当然也可以使用 lambda 表达式

cols_to_use = ['item_type', 'order id', 'order date', 'state', 'priority']
df = pd.read_excel(src_file,
                   header=1,
                   usecols=lambda x: x.lower() in cols_to_use)

范围和表格

在某些情况下,Excel 中的数据可能会更加不确定,在我们的 Excel 数据中,我们有一个想要读取的名为 ship_cost 的表,这该怎么获取呢

在这种情况下,我们可以直接使用 openpyxl 来解析 Excel 文件并将数据转换为 pandas DataFrame

以下是使用 openpyxl(安装后)读取 Excel 文件的方法:

from openpyxl import load_workbook
import pandas as pd
from pathlib import Path
src_file = src_file = Path.cwd() / 'shipping_tables.xlsx'
wb = load_workbook(filename = src_file)

查看所有的 sheet 页,获取某个 sheet 页,获取 Excel 范围数据

wb.sheetnames
sheet = wb['shipping_rates']
lookup_table = sheet.tables['ship_cost']
lookup_table.ref


现在我们以及知道要加载的数据范围了, 接下来就是将该范围转换为 Pandas DataFrame

# 获取数据范围
data = sheet[lookup_table.ref]
rows_list = []
# 循环获取数据
for row in data:
    cols = []
    for col in row:
        cols.append(col.value)
    rows_list.append(cols)
df = pd.DataFrame(data=rows_list[1:], index=None, columns=rows_list[0])


这样我们就获取到了干净的表数据了

好了,今天的两个小知识点就分享到这里了,我们下次再见!

相关文章
|
19天前
|
存储 数据挖掘 数据处理
掌握Pandas核心数据结构:Series与DataFrame的四种创建方式
本文介绍了 Pandas 库中核心数据结构 Series 和 DataFrame 的四种创建方法,包括从列表、字典、标量和 NumPy 数组创建 Series,以及从字典、列表的列表、NumPy 数组和 Series 字典创建 DataFrame,通过示例详细说明了每种创建方式的具体应用。
119 67
|
5天前
|
存储 数据挖掘 索引
Pandas数据结构:Series与DataFrame
本文介绍了 Python 的 Pandas 库中两种主要数据结构 `Series` 和 ``DataFrame`,从基础概念入手,详细讲解了它们的创建、常见问题及解决方案,包括数据缺失处理、数据类型转换、重复数据删除、数据筛选、排序、聚合和合并等操作。同时,还提供了常见报错及解决方法,帮助读者更好地理解和使用 Pandas 进行数据分析。
36 10
|
18天前
|
数据可视化 数据处理 Python
使用Pandas实现Excel中的数据透视表功能
本文介绍了如何使用Python的Pandas库实现Excel中的数据透视表功能,包括环境准备、创建模拟销售数据、代码实现及输出等步骤。通过具体示例展示了按地区和销售员汇总销售额的不同方法,如求和、平均值、最大值等,帮助读者掌握Pandas在数据处理上的强大能力。
52 12
|
1月前
|
SQL 数据采集 数据可视化
Pandas 数据结构 - DataFrame
10月更文挑战第26天
54 2
Pandas 数据结构 - DataFrame
|
1月前
|
索引 Python
Pandas 数据结构 - Series
10月更文挑战第26天
39 2
Pandas 数据结构 - Series
|
2月前
|
数据处理 Python
Python 高级技巧:深入解析读取 Excel 文件的多种方法
在数据分析中,从 Excel 文件读取数据是常见需求。本文介绍了使用 Python 的三个库:`pandas`、`openpyxl` 和 `xlrd` 来高效处理 Excel 文件的方法。`pandas` 提供了简洁的接口,而 `openpyxl` 和 `xlrd` 则针对不同版本的 Excel 文件格式提供了详细的数据读取和处理功能。此外,还介绍了如何处理复杂格式(如合并单元格)和进行性能优化(如分块读取)。通过这些技巧,可以轻松应对各种 Excel 数据处理任务。
248 16
|
3月前
|
Python
pandas 生成 Excel 时的 sheet 问题
pandas 生成 Excel 时的 sheet 问题
40 1
|
3月前
|
数据采集 索引 Python
pandas处理excel
pandas处理excel
|
3月前
|
Python
Python:Pandas实现批量删除Excel中的sheet
Python:Pandas实现批量删除Excel中的sheet
163 0
|
3月前
|
存储 数据挖掘 测试技术
Python接口自动化中操作Excel文件的技术方法
通过上述方法和库,Python接口自动化中的Excel操作变得既简单又高效,有助于提升自动化测试的整体质量和效率。
39 0