Python:Pandas实现批量删除Excel中的sheet

简介: Python:Pandas实现批量删除Excel中的sheet

前些天,有个人问我如何批量删除Excel中的sheet,具体问题描述是:有一大堆Excel文件,里面有一些Excel中有多余的sheet(如:张三、李四等),需要将这些多余的sheet删除并保存,如何解决这个问题?其实利用Python中的pandas库能完美解决此类问题。

以一个Excel为例子:

这个Excel中有6个sheet,我要删除后两个sheets即:DetailVol_127_1_1和DetaiTemp_127_1_1,下面的代码就可以帮大家实现。


import pandas as pd#找到Excel文件路径并读取path='./'new_path='./new/'i='xxx.xls'xl=pd.ExcelFile(path+i)#读取所有的sheets并存入names列表中names=xl.sheet_names#新建一个Excel文件writer=pd.ExcelWriter(new_path+i)for name in names[:-2]:  #逐个sheet读取并将其存入新的excel文件中  df=pd.read_excel(path+i,sheet_name=name)  df.to_excel(writer,sheet_name=name)  writer.save()

运行完后,新的Excel文件就放到new文件夹里了,自己可以尝试一下,有人问删除一个sheet不是分分钟的事情吗?是的,但一旦有一大堆Excel需要你操作怎么办?Python的好处就在于自动化操作,写个循环,几秒钟搞定半天的工作量而且还不怕出错,这就是为啥人们常说“Python好!”😄😄

相关文章
|
1月前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
173 0
|
1月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
286 0
|
1月前
|
人工智能 Java Linux
Python高效实现Excel转PDF:无Office依赖的轻量化方案
本文介绍无Office依赖的Python方案,利用Spire.XLS、python-office、Aspose.Cells等库实现Excel与PDF高效互转。支持跨平台部署、批量处理、格式精准控制,适用于服务器环境及自动化办公场景,提升转换效率与系统稳定性。
225 7
|
28天前
|
机器学习/深度学习 监控 数据挖掘
Python 高效清理 Excel 空白行列:从原理到实战
本文介绍如何使用Python的openpyxl库自动清理Excel中的空白行列。通过代码实现高效识别并删除无数据的行与列,解决文件臃肿、读取错误等问题,提升数据处理效率与准确性,适用于各类批量Excel清理任务。
287 0
|
4月前
|
开发工具 Python
使用Python和OpenAPI将云上的安全组规则填写入Excel
本文介绍如何通过Python脚本自动化获取阿里云安全组及其规则信息,并将结果导出为Excel表格。相比CLI命令行方式,Python实现更高效、便捷,适用于需要批量处理和交付的场景。
使用Python和OpenAPI将云上的安全组规则填写入Excel
|
3月前
|
存储 数据采集 数据处理
Pandas与NumPy:Python数据处理的双剑合璧
Pandas与NumPy是Python数据科学的核心工具。NumPy以高效的多维数组支持数值计算,适用于大规模矩阵运算;Pandas则提供灵活的DataFrame结构,擅长处理表格型数据与缺失值。二者在性能与功能上各具优势,协同构建现代数据分析的技术基石。
292 0
|
6月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
259 2
|
9月前
|
Python
python pandas学习(一)
该代码段展示了四个主要操作:1) 删除指定列名,如商品id;2) 使用正则表达式模糊匹配并删除列,例如匹配订单商品名称1的列;3) 将毫秒级时间戳转换为带有时区调整的日期时间格式,并增加8小时以适应本地时区;4) 将列表转换为DataFrame后保存为Excel文件,文件路径和名称根据变量拼接而成。
111 3
|
10月前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
261 2
|
存储 数据处理 索引
Python操作Excel常用方法汇总
Python操作Excel常用方法汇总
491 0

热门文章

最新文章

推荐镜像

更多