OpenCV中Fisherfaces人脸识别器识别人脸实战(附Python源码)

简介: OpenCV中Fisherfaces人脸识别器识别人脸实战(附Python源码)

需要源码和图片请点赞关注收藏后评论区留言私信~~~

Fisherfaces是由Ronald Fisher最早提出的,这也是它名字的又来,它基于LDA线性判别分析技术,该方法将人脸数据转换到另外一个空间维度做投影计算,最后根据不同人脸数据的投影距离判断其相似度。开发者同样需要通过以下三个方法完成人脸识别操作

1:通过cv2.face.FisherFaceRecognizer_create(num_components,threshold)

参数说明如下

num_components:可选参数 通过Fisherface方法判断分析时保留的分量个数,建议使用默认值

threshold 可选参数 人脸识别时使用的阈值 建议使用默认值

2:创建识别器对象后 需要通过对象的train方法训练识别器,建议每个人都给出两张以上的人脸图像作为训练样本

recognizer.train(src,train)

参数说明如下

src 用来训练的人脸图像样本列表 格式为list 样本图像宽高必须一致

labels 样本对应的标签,格式为数组,元素类型为整数

3:训练识别器后可以通过识别器的predict方法识别人脸。该方法对比样本的特征,给出最相近的结果和评分

label,confidence=recognizer.predict(src)

label 与样本匹配程度最高的标签纸

confidence 匹配程度最高的信用度评分,评分小于5000程度较高,0分表示两幅图像完全一样

下面以两个人的照片作为训练样本

待识别照片如下

程序输出如下

confidence=2327.1708678

Mike

程序对比样本特征分析得出,被识别的人物特征最接近的是KaiKai

部分代码如下

import cv2
import numpy as np
photos = list()  # 样本图像列表
lables = list()  # 标签列表
photos.append(cv2.imread("face\\Mike1.png", 0))  # 记录第1张人脸图像
lables.append(0)  # 第1张图像对应的标签
photos.append(cv2.imread("face\\Mike2.png", 0))  # 记录第2张人脸图像
lables.(0)  # 第2张图像对应的标签
photos.append(cv2.imread("face\\Mike3.png", 0))  # 记录第3张人脸图像
lables.append(0)  # 第3张图像对应的标
photos.append(cv2.imread("face\\kaikai1.png", 0))  # 记录第4张人脸图像
lables.append(1)  # 第4张图像对应的标签
photos.appen(.imread("face\\kaikai2.png", 0))  # 记录第5张人脸图像
lables.append(1)  # 第5张图像对应的标签
photos.apv2.imread("face\\kaikai3.png", 0))  # 记录第6张人脸图像
lables.append(1)  # 第6张图像对应的标签
names = {"0": "Mike", "1": "kaikai"}  # 标签对应的名称字典
recognizer = cv2.face.FisherFaceRecognizer_create()  # 创建线性判别分析识别器
recognizer.train(photos, np.array(lables))  # 识别器开始训练
i = cv2.imrad("face\\Mike4.png", 0)  # 待识别的人脸图像
label, confdce = recognizer.predict(i)  # 识别器开始分析人脸图像
print("cofidence = " + str(confidence))  # 打印评分
print(name[strbe)  # 数组字典里标签对应的名字
cv2.waitKey()  # 按下何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
2天前
|
人工智能 数据安全/隐私保护 异构计算
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
40 8
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
|
4月前
|
机器学习/深度学习 监控 算法
基于mediapipe深度学习的手势数字识别系统python源码
本内容涵盖手势识别算法的相关资料,包括:1. 算法运行效果预览(无水印完整程序);2. 软件版本与配置环境说明,提供Python运行环境安装步骤;3. 部分核心代码,完整版含中文注释及操作视频;4. 算法理论概述,详解Mediapipe框架在手势识别中的应用。Mediapipe采用模块化设计,包含Calculator Graph、Packet和Subgraph等核心组件,支持实时处理任务,广泛应用于虚拟现实、智能监控等领域。
|
27天前
|
机器学习/深度学习 数据采集 算法
基于mediapipe深度学习的运动人体姿态提取系统python源码
本内容介绍了基于Mediapipe的人体姿态提取算法。包含算法运行效果图、软件版本说明、核心代码及详细理论解析。Mediapipe通过预训练模型检测人体关键点,并利用部分亲和场(PAFs)构建姿态骨架,具有模块化架构,支持高效灵活的数据处理流程。
|
13天前
|
小程序 PHP 图形学
热门小游戏源码(Python+PHP)下载-微信小程序游戏源码Unity发实战指南​
本文详解如何结合Python、PHP与Unity开发并部署小游戏至微信小程序。涵盖技术选型、Pygame实战、PHP后端对接、Unity转换适配及性能优化,提供从原型到发布的完整指南,助力开发者快速上手并发布游戏。
|
3月前
|
算法 数据可视化 数据挖掘
基于EM期望最大化算法的GMM参数估计与三维数据分类系统python源码
本内容展示了基于EM算法的高斯混合模型(GMM)聚类实现,包含完整Python代码、运行效果图及理论解析。程序使用三维数据进行演示,涵盖误差计算、模型参数更新、结果可视化等关键步骤,并附有详细注释与操作视频,适合学习EM算法与GMM模型的原理及应用。
|
2月前
|
并行计算 算法 Java
Python3解释器深度解析与实战教程:从源码到性能优化的全路径探索
Python解释器不止CPython,还包括PyPy、MicroPython、GraalVM等,各具特色,适用于不同场景。本文深入解析Python解释器的工作原理、内存管理机制、GIL限制及其优化策略,并介绍性能调优工具链及未来发展方向,助力开发者提升Python应用性能。
130 0
|
3月前
|
API 数据安全/隐私保护 开发者
企业微信自动加好友软件,导入手机号批量添加微信好友,python版本源码分享
代码展示了企业微信官方API的合规使用方式,包括获取access_token、查询部门列表和创建用户等功能
|
3月前
|
数据安全/隐私保护 计算机视觉 Python
人脸识别图片眨眼生成器,手机制作人脸眨眼张嘴, 代替真人刷脸软件
代码实现了基于面部特征点的人脸动画生成,包括眨眼和张嘴动作。它使用dlib进行人脸检测和特征点定位
|
3月前
|
数据安全/隐私保护 计算机视觉 Python
人脸识别图片眨眼生成器,虚拟相机过人脸软件, 秒解人脸识别软件
这个系统包含三个主要模块:人脸检测与特征点识别、虚拟相机实现和主程序入口。代码使用了dlib库
|
3月前
|
机器人 API 数据安全/隐私保护
QQ机器人插件源码,自动回复聊天机器人,python源码分享
消息接收处理:通过Flask搭建HTTP服务接收go-cqhttp推送的QQ消息47 智能回复逻辑

推荐镜像

更多