OpenCV中使用Eigenfaces人脸识别器识别人脸实战(附Python源码)

简介: OpenCV中使用Eigenfaces人脸识别器识别人脸实战(附Python源码)

需要源码和图片请点赞关注收藏后评论区留言私信~~~

Opencv提供了三种人脸识别方法,分别是Eigenfaces,Fisherfaces,LBPH这三种放噶都是通过对比样本最终实现人脸识别,因为这三种算法提取特征的方式不一样,侧重点不一样,所以不能分出孰优孰劣,只能说每种方法都有各自的风格

Eigenfaces人脸识别器

Eigenfaces也叫做特征脸,它通过pca主成分分析方法将人脸数据转换到另一个空间维度做相似性计算,在计算过程中,算法可以忽略一些无关紧要的数据,仅识别一些具有代表性的特征数据,最后根据这些特征识别人脸

开发者需要通过以下三种方法完成人脸识别操作

通过cv2.face.EigenFaceRecognizer_create()方法创建Eigenfaces人脸识别器 语法如下

recognizer=cv2.face.EigenFaceRecognizer_create(num_components,threshold)

参数说明如下

num_components:可选参数 pca方法中保留的分量个数,建议使用默认值

threshold:可选参数 人脸识别时使用的阈值 建议使用默认值

recognizer:创建的eigenfaces人脸识别器对象

创建识别器对象后,需要通过对象的train方法训练识别器,建议每个人都给出两张以上的人脸图像作为训练样本 语法如下

recognizer.train(src,labels)

参数说明

src 用来训练的人脸图像样本列表 格式为list 样本图像必须宽高一致

label 样本对应的标签 格式为数组元素类型为整数 数组长度必须与样本列表长度相同,样本与标签按照插入顺序一一对应

训练识别器后可以通过识别器的predict方法识别人脸,该方法对比样本的特征,给出最相近的结果和评分 语法如下

label,confidence=recognizer.predice(src)

src 需要识别的人脸图像 该图像宽高必须与样本一致

label 与样本匹配程度最高的标签值

confidence 匹配程度最高的信用度评分,评分小于5000匹配程度较高,0分表示两幅图像完全一样

下面通过一个实例演示eigenfaces人脸识别器的用法 结果如下

以两个人的照片作为训练样本,第一个人照片如下图所示

第二个人照片如下

待识别照片如下

程序输出如下

confidence=18669.72829

Summer

程序对比样本特征分析得出,被识别的人物特征最接近的是Summer

部分代码如下

import cv2
import numpy as np
photos = list()  # 样本图像列表
lables = list()  # 标签列表
photos.append(cv2.imread("face\\summer1.png", 0))  # 记录第1张人脸图像
lables.append(0)  # 第1张图像对应的标签
photos.append(cv2.imread("face\\summer2.png", 0))  # 记录第2张人脸图像
lables.append(0)  # 第2张图像对应的标签
photos.append(cv2.imread("face\\summer3.png", 0))  # 记录第3张人脸图像
lables.append(0)  # 第3对应的标签
photos.append(cv2.imread("face\\Elvis1.png", 0))  # 记录第4张人脸图像
lables.append(1)  # 第4对应的标签
photos.append(cv2.imread("face\\Elvis2.png", 0))  # 记录第5张人脸图像
lables.append(1)  # 第5张图像对应的标签
photos.append(cv2.imread("face\\Elvis3.png", 0))  # 记录第6张人脸图像
lables.append(1)  # 第6张对应的标签
names = {"0": "Summer", "1": "Elvis"}  # 标签对应的名称字典
= cv2.face.EigenFaceRecognizer_create()  # 创建特征脸识别器
recognizer.train(phoos, np.array(lables))  # 识别器开始训练
i = cv2.imread("face\\.png", 0)  # 待识别的人脸图像
label, confidene == " + str(confidence))  # 打印评分
print(names[str(label)])  # 数组字典里标签对应的名字
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
15天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
1月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
105 6
|
15天前
|
小程序 开发者 Python
探索Python编程:从基础到实战
本文将引导你走进Python编程的世界,从基础语法开始,逐步深入到实战项目。我们将一起探讨如何在编程中发挥创意,解决问题,并分享一些实用的技巧和心得。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考。让我们一起开启Python编程的探索之旅吧!
41 10
|
1月前
|
设计模式 前端开发 数据库
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第27天】本文介绍了Django框架在Python Web开发中的应用,涵盖了Django与Flask等框架的比较、项目结构、模型、视图、模板和URL配置等内容,并展示了实际代码示例,帮助读者快速掌握Django全栈开发的核心技术。
172 45
|
27天前
|
算法 Unix 数据库
Python编程入门:从基础到实战
本篇文章将带你进入Python编程的奇妙世界。我们将从最基础的概念开始,逐步深入,最后通过一个实际的项目案例,让你真正体验到Python编程的乐趣和实用性。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。让我们一起探索Python的世界吧!
|
29天前
|
并行计算 调度 开发者
探索Python中的异步编程:从基础到实战
在Python的世界里,异步编程是一种让程序运行更加高效、响应更快的技术。本文不仅会介绍异步编程的基本概念和原理,还将通过具体代码示例展示如何在Python中实现异步操作。无论你是初学者还是有经验的开发者,都能从中获益,了解如何运用这一技术优化你的项目。
|
29天前
|
数据处理 Python
探索Python中的异步编程:从基础到实战
在Python的世界中,“速度”不仅是赛车手的追求。本文将带你领略Python异步编程的魅力,从原理到实践,我们不单单是看代码,更通过实例感受它的威力。你将学会如何用更少的服务器资源做更多的事,就像是在厨房里同时烹饪多道菜而不让任何一道烧焦。准备好了吗?让我们开始这场技术烹饪之旅。
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
1月前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
1月前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
70 4

热门文章

最新文章

下一篇
DataWorks