OpenCV均值、中值滤波器的讲解及实战应用(附Python源码)

简介: OpenCV均值、中值滤波器的讲解及实战应用(附Python源码)

需要源码和图片请点赞关注收藏后评论区留言私信~~~

在尽量保留原图像信息的情况下,去除图像内噪声、降低细节层次信息等一系列过程,叫作图像的平滑处理(或图像的模糊处理)。实现平滑处理最常用的工具就是滤波器。通过调节滤波器的参数,可以控制图像的平滑程度。OpenCV提供了种类丰富的滤波器,每种滤波器使用的算法均不同,但都能对图像中的像素值进行微调,让图像呈现平滑效果

一、均值滤波器

图像中可能会出现这样一种像素,该像素与周围像素的差别非常大,导致视觉上就能看出该像素无法与周围像素组成可识别的图像信息,降低了整个图像的质量,这种格格不入的像素就是图像的噪声,如果图像中的噪声都是随机的纯黑像素和纯白像素,这种噪声称作椒盐噪声,如下图所示

以一个像素为核心,其周围像素可以组成一个n行n列的矩阵,这样的矩阵结构在滤波操作中被称为滤波核,矩阵的行和列决定了滤波核的大小

3×3的滤波核

均值滤波器可以把图像中的每一个像素都当成滤波核的核心,然后计算所有像素的平均值,最后让核心像素值等于这个平均值

均值滤波计算过程如下

OpenCV将均值滤波器封装成blur方法 语法格式如下

dst=cv2.blur(src,ksize,anchor,borderType)

ksize (高、宽)滤波核大小 滤波核越大 处理之后的图像就越模糊

anchor 可选参数 滤波核的锚点

下面对花朵图像进行均值滤波操作

由下图可见 滤波核越大 那么进行滤波之后的图像就越模糊

部分代码如下

import cv2
img = cv2.imread("amygdaus triloba.jpg")  # 读取原图
dst1 = cv2.blur(img, (3,3))  # 使用大小为3*3的滤波核进行均值滤波
dst2 = cv.blur(img, (5, 5))  # 使用大小为5*5的滤波核进行均值滤波
dst3 = v2.blur(img, (9, 9))  # 使用大小为9*9的滤波核进行均值滤波
cv2.imshow(img", img)  # 显示原图
cv2.imshow("3*3", dst1)  # 显示滤波效果
cv2.imshow("5*5", dst2)
cv2.imsow("9*9", dst3)
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

二、中值滤波器

中值滤波器的原理与均值滤波器非常相似,唯一的不同就是不计算像素的平均值,而是将所有像素值排序,把最中间的像素值取出,赋值给核心像素

中值滤波计算原理如下图

OpenCV将中值滤波器封装成medianblur方法 语法如下

dst=cv2.medianBlur(src,ksize)

ksize 滤波核的边长 必须是大于1的奇数 该方法根据此边长自动创建一个正方形的滤波核

处理效果如下

部分代码如下

import cv2ad("amygdalus triloba.jpg")  # 读取原图
dst1 = cv2.mednBlur(img, 3)  # 使用宽度为3的滤波核进行中值滤波
dst2 = cv2.(img, 5)  # 使用宽度为5的滤波核进行中值滤波
dst3 = cv2(img, 9)  # 使用宽度为9的滤波核进行中值滤波
cv2.imshow("img", img)  # 显示原图
cv2.imhow("3", dst1)  # 显示滤波效果
cv2.imshow("5", dst2)
cv2.imshw("9",dst3)
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
2月前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
172 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
|
2月前
|
监控 供应链 数据挖掘
淘宝商品详情API接口解析与 Python 实战指南
淘宝商品详情API接口是淘宝开放平台提供的编程工具,支持开发者获取商品详细信息,包括基础属性、价格、库存、销售策略及卖家信息等。适用于电商数据分析、竞品分析与价格策略优化等场景。接口功能涵盖商品基础信息、详情描述、图片视频资源、SKU属性及评价统计的查询。通过构造请求URL和签名,可便捷调用数据。典型应用场景包括电商比价工具、商品数据分析平台、供应链管理及营销活动监控等,助力高效运营与决策。
186 26
|
2月前
|
存储 监控 算法
企业数据泄露风险防控视域下 Python 布隆过滤器算法的应用研究 —— 怎样防止员工私下接单,监控为例
本文探讨了布隆过滤器在企业员工行为监控中的应用。布隆过滤器是一种高效概率数据结构,具有空间复杂度低、查询速度快的特点,适用于大规模数据过滤场景。文章分析了其在网络访问监控和通讯内容筛查中的实践价值,并通过Python实现示例展示其技术优势。同时,文中指出布隆过滤器存在误判风险,需在准确性和资源消耗间权衡。最后强调构建多维度监控体系的重要性,结合技术与管理手段保障企业运营安全。
65 10
|
2月前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
85 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
2月前
|
存储 机器学习/深度学习 人工智能
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
本文探讨了多模态RAG系统的最优实现方案,通过模态特定处理与后期融合技术,在性能、准确性和复杂度间达成平衡。系统包含文档分割、内容提取、HTML转换、语义分块及向量化存储五大模块,有效保留结构和关系信息。相比传统方法,该方案显著提升了复杂查询的检索精度(+23%),并支持灵活升级。文章还介绍了查询处理机制与优势对比,为构建高效多模态RAG系统提供了实践指导。
426 0
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
|
2月前
|
机器学习/深度学习 人工智能 算法
Python+YOLO v8 实战:手把手教你打造专属 AI 视觉目标检测模型
本文介绍了如何使用 Python 和 YOLO v8 开发专属的 AI 视觉目标检测模型。首先讲解了 YOLO 的基本概念及其高效精准的特点,接着详细说明了环境搭建步骤,包括安装 Python、PyCharm 和 Ultralytics 库。随后引导读者加载预训练模型进行图片验证,并准备数据集以训练自定义模型。最后,展示了如何验证训练好的模型并提供示例代码。通过本文,你将学会从零开始打造自己的目标检测系统,满足实际场景需求。
479 0
Python+YOLO v8 实战:手把手教你打造专属 AI 视觉目标检测模型
|
2月前
|
数据采集 存储 数据可视化
2025python实战:利用海外代理IP验证广告投放效果
本文介绍了如何利用Python结合海外代理IP技术,验证广告在不同国家的实际投放效果。通过模拟各地网络环境访问广告页面,检查内容是否与计划一致,并生成曝光报告。具体实现包括:获取高质量代理IP、使用Selenium或Playwright模拟用户行为、解析广告内容及生成可视化报告。案例显示,该方法能有效确保广告精准投放,优化策略并节省预算。
|
9月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
2595 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
10月前
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
125 4
|
10月前
|
存储 计算机视觉
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
本文介绍了使用OpenCV进行图像读取、显示和存储的基本操作,以及如何绘制直线、圆形、矩形和文本等几何图形的方法。
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制

推荐镜像

更多