OpenCV均值、中值滤波器的讲解及实战应用(附Python源码)

简介: OpenCV均值、中值滤波器的讲解及实战应用(附Python源码)

需要源码和图片请点赞关注收藏后评论区留言私信~~~

在尽量保留原图像信息的情况下,去除图像内噪声、降低细节层次信息等一系列过程,叫作图像的平滑处理(或图像的模糊处理)。实现平滑处理最常用的工具就是滤波器。通过调节滤波器的参数,可以控制图像的平滑程度。OpenCV提供了种类丰富的滤波器,每种滤波器使用的算法均不同,但都能对图像中的像素值进行微调,让图像呈现平滑效果

一、均值滤波器

图像中可能会出现这样一种像素,该像素与周围像素的差别非常大,导致视觉上就能看出该像素无法与周围像素组成可识别的图像信息,降低了整个图像的质量,这种格格不入的像素就是图像的噪声,如果图像中的噪声都是随机的纯黑像素和纯白像素,这种噪声称作椒盐噪声,如下图所示

以一个像素为核心,其周围像素可以组成一个n行n列的矩阵,这样的矩阵结构在滤波操作中被称为滤波核,矩阵的行和列决定了滤波核的大小

3×3的滤波核

均值滤波器可以把图像中的每一个像素都当成滤波核的核心,然后计算所有像素的平均值,最后让核心像素值等于这个平均值

均值滤波计算过程如下

OpenCV将均值滤波器封装成blur方法 语法格式如下

dst=cv2.blur(src,ksize,anchor,borderType)

ksize (高、宽)滤波核大小 滤波核越大 处理之后的图像就越模糊

anchor 可选参数 滤波核的锚点

下面对花朵图像进行均值滤波操作

由下图可见 滤波核越大 那么进行滤波之后的图像就越模糊

部分代码如下

import cv2
img = cv2.imread("amygdaus triloba.jpg")  # 读取原图
dst1 = cv2.blur(img, (3,3))  # 使用大小为3*3的滤波核进行均值滤波
dst2 = cv.blur(img, (5, 5))  # 使用大小为5*5的滤波核进行均值滤波
dst3 = v2.blur(img, (9, 9))  # 使用大小为9*9的滤波核进行均值滤波
cv2.imshow(img", img)  # 显示原图
cv2.imshow("3*3", dst1)  # 显示滤波效果
cv2.imshow("5*5", dst2)
cv2.imsow("9*9", dst3)
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

二、中值滤波器

中值滤波器的原理与均值滤波器非常相似,唯一的不同就是不计算像素的平均值,而是将所有像素值排序,把最中间的像素值取出,赋值给核心像素

中值滤波计算原理如下图

OpenCV将中值滤波器封装成medianblur方法 语法如下

dst=cv2.medianBlur(src,ksize)

ksize 滤波核的边长 必须是大于1的奇数 该方法根据此边长自动创建一个正方形的滤波核

处理效果如下

部分代码如下

import cv2ad("amygdalus triloba.jpg")  # 读取原图
dst1 = cv2.mednBlur(img, 3)  # 使用宽度为3的滤波核进行中值滤波
dst2 = cv2.(img, 5)  # 使用宽度为5的滤波核进行中值滤波
dst3 = cv2(img, 9)  # 使用宽度为9的滤波核进行中值滤波
cv2.imshow("img", img)  # 显示原图
cv2.imhow("3", dst1)  # 显示滤波效果
cv2.imshow("5", dst2)
cv2.imshw("9",dst3)
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
10天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
11天前
|
机器学习/深度学习 数据可视化 数据处理
Python数据科学:从基础到实战
Python数据科学:从基础到实战
20 1
|
7天前
|
数据采集 存储 数据处理
探索Python中的异步编程:从基础到实战
【10月更文挑战第39天】在编程世界中,时间就是效率的代名词。Python的异步编程特性,如同给程序穿上了一双翅膀,让它们在执行任务时飞得更高、更快。本文将带你领略Python异步编程的魅力,从理解其背后的原理到掌握实际应用的技巧,我们不仅会讨论理论基础,还会通过实际代码示例,展示如何利用这些知识来提升你的程序性能。准备好让你的Python代码“起飞”了吗?让我们开始这场异步编程的旅程!
18 0
|
11天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
6月前
|
测试技术 Python
Python中的装饰器应用与实践
在Python编程中,装饰器是一种强大的工具,能够优雅地扩展和修改函数或方法的行为。本文将深入探讨Python中装饰器的作用、原理以及实际应用场景,帮助读者更好地理解并运用装饰器提升代码的可维护性和灵活性。
|
10天前
|
机器学习/深度学习 数据采集 数据可视化
Python在数据科学中的应用:从入门到实践
本文旨在为读者提供一个Python在数据科学领域应用的全面概览。我们将从Python的基础语法开始,逐步深入到数据处理、分析和可视化的高级技术。文章不仅涵盖了Python中常用的数据科学库,如NumPy、Pandas和Matplotlib,还探讨了机器学习库Scikit-learn的使用。通过实际案例分析,本文将展示如何利用Python进行数据清洗、特征工程、模型训练和结果评估。此外,我们还将探讨Python在大数据处理中的应用,以及如何通过集成学习和深度学习技术来提升数据分析的准确性和效率。
|
5月前
|
数据采集 数据可视化 大数据
Python在大数据处理中的应用实践
Python在大数据处理中扮演重要角色,借助`requests`和`BeautifulSoup`抓取数据,`pandas`进行清洗预处理,面对大规模数据时,`Dask`提供分布式处理能力,而`matplotlib`和`seaborn`则助力数据可视化。通过这些工具,数据工程师和科学家能高效地管理、分析和展示海量数据。
210 4
|
28天前
|
设计模式 开发者 Python
Python编程中的设计模式应用与实践###
【10月更文挑战第18天】 本文深入探讨了Python编程中设计模式的应用与实践,通过简洁明了的语言和生动的实例,揭示了设计模式在提升代码可维护性、可扩展性和重用性方面的关键作用。文章首先概述了设计模式的基本概念和重要性,随后详细解析了几种常用的设计模式,如单例模式、工厂模式、观察者模式等,在Python中的具体实现方式,并通过对比分析,展示了设计模式如何优化代码结构,增强系统的灵活性和健壮性。此外,文章还提供了实用的建议和最佳实践,帮助读者在实际项目中有效运用设计模式。 ###
14 0
|
1月前
|
人工智能 算法 搜索推荐
通义灵码在Python项目开发中的应用实践
通义灵码在Python项目开发中的应用实践
99 0
|
6月前
|
数据采集 数据挖掘 大数据
Python在数据分析中的应用及实践
【2月更文挑战第13天】 本文旨在探讨Python语言在数据分析领域的广泛应用及其实践方法。通过深入浅出的方式,介绍Python在处理、分析大数据时的核心库和工具,如Pandas、NumPy、Matplotlib等,并通过一个实际案例来展示这些工具如何协同工作,解决数据分析中遇到的常见问题。文章不仅为读者提供了一个学习和应用Python进行数据分析的起点,也通过案例分析,展示了Python在数据处理能力上的强大与灵活性,旨在激发读者对Python数据分析深入学习和研究的兴趣。