OpenCV使用单目标匹配从图像中选择最佳的匹配结果及查找重复图像实战(附Python源码)

简介: OpenCV使用单目标匹配从图像中选择最佳的匹配结果及查找重复图像实战(附Python源码)

需要源码和图片请点赞关注收藏后评论区留言私信~~~

模板匹配是一种最原始、最基本的识别方法,可以在原始图像中寻找特定图像的位置。模板匹配经常应用于简单的图像查找场景中,例如,在集体合照中找到某个人的位置

一、模板匹配方法

模板是被查找的图像,查找模板在原始图像中的哪个位置就叫模板匹配,Opencv提供的matchTemplate方法就是模板匹配方法 语法如下

result=cv2.matchTemplate(image,templ,method,mask)

image 原始图像

templ 模板图像

method 匹配的方法 如下图所示

mask掩模

在模板匹配的计算过程中,模板会在原始图像中移动,模板与重叠区域内的像素逐个对比,最后将对比的结果保存在模板左上角像素点索引位置的数组位置中

二、单模板匹配

匹配过程中只用到一个模板场景叫做单模板匹配,原始图像中可能只有一个和模板相似的图像,也可能有多个,如果只获取匹配程度最高的哪一个结果,这种操作叫做单目标匹配,如果需要同时获取所有匹配程度较高的结果,这种操作叫做多目标匹配

单目标匹配只获取一个结果即可,就是匹配程度最高的结果。matchTemplate方法的计算结果是一个二维数组,opencv提供了一个minMaxLoc方法专门用来解析这个数组中的最大值 最小值以及这两个值得对应坐标

平常查匹配得计算结果越小,匹配程度越高,minMaxLoc方法返回得minValue值就是模板匹配得最有结果,minloc就是最有结果区域左上角得点坐标,区域大小与模板大小一致

结果如下

左上角为模板图像 右边为在原始图像中找到了模板图像 完成匹配

代码如下

import cv2
img = cv2.imread("background.jpg")  # 读取原始图像
templ = cv2.imread("template.png")  # 读取模板图像
width, height, c = templ.shape   模板图像的宽度、高度和通道数
results = cv2.(img, templ, cv2.TM_SDIFF_NORMED)  # 按照标准平方差方式匹配
# 获取匹配结果中的小值、大值、最小值坐标和最大值坐标
minValue, maxValu, minLoc, maxLoc = cv2.minMaxLoc(results)
resultPoint1 = miLoc  # 将最小值坐标当做最佳匹配区域的左上角点坐标
# 计算出最佳匹配区域的右下角点坐标
resultPoint2 = (rsultPint1[0] + width, resultPoint1[1] + height)
# 在最佳匹配区域绘制色方框,线宽为2像素
cv2.rectangle(img,esultPoint1, resultPoint2, (0, 0, 255), 2)
cv2.imshow('templ',templ)
cv2.imshow("img", img) # 显示匹配的结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

下面我们从两幅图像中寻找最佳得匹配图像

模板如下

两幅原始图像如下

程序给出最佳匹配结果如下

可见222这张图像与原图匹配程度最高

代码如下

import cv2
image = []  # 存储原始图像的列表
# 向image列表添加原始图像image_221.png
image.append(cv2("image_221.png"))
# 向image列表加原始图像ige_222.png
image.append(cv2.mread("image_222.png"))
templ = cv2.ime("templ.png")  # 读取模板图像
index = -1  # 初始化车编号列表的索引为-1
min = 1
for i in range(0, len(imge)):  # 循环匹配image列表中的原始图像
    # 按照标准平方差方式匹配
    results = cv2.matchTemplate(image[i], templ, cv2.TM_SQDIFF_NORMED)
    # 获得最佳匹配结果的索
    if min > any(results[0]):
        index = 
cv2.imshow("result", image[index])  # 显示最佳匹配结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

下面我们将一个文件夹中保存十张图片,编写一个程序来找出哪些是重复的照片

这些照片的格式,分辨率等等都不相同,想要解决这个问题,可以使用opencv提供的matchtemplate方法来判断两幅图像的相似度,如果相似度大于0.9,就认为这两幅图像是先相同的

匹配结果如下

我们打开文件夹中也可以看出这些图像的确相同

代码如下

import cv2
import os
import sys
PIC_PATH = "test\\"  # 照片文件夹地址
width, height = 100, 100  # 缩放比例
pic_file = os.listdir(PIC_PATH)  # 所有照片文件列表
same_pic_index = []  # 相同图像的索引列表
imgs = []  # 缩放后 相同图像的集合
count = len(pic_file)  # 照片数量
if count == 0:  # 如果照片数量为零
    print("没有图像")
    sys.exit(0)  # 停止程序
for file_name in pic_file:  # 遍历ght))  # 缩放成统一大小
    imgs.append(img)  # 按文件顺序保存图像对象
for i in range(0,count - 1):  # 遍历所有图像文件,不遍历最后一个图像
    if i in has_same:  # 如果此图像已经找到相同的图像
        continue  # 跳过
    templ = imgs[i]# 取出模板图像
    same = [i]  # 与templ内容相同的图像索引列表
    for j in range(same:  # 如果此图像已经找到相同的图像
            continue  # 跳过
        pic = imgs[j]  # 取出对照图像
        results = cv2.matchTemplate(pic, templ, cv2.TM_CCOEFF_NORMED)  # 比较两图像相速度
        if results > 0.9:  # 如果似度大于90%,认为是同一张照片
            same.append( # 记录对照图像的索引
            has_same.add(i)  # 模板图像已找到相同图像
            has_same.add(j)  # 对照图像已找到相同图像
    if len(same) > 1:  # 如果模板图像找到了至少一张与自己相同的图像
        same_pic_index.append(same)  # 记录相同图像的索引
for same_list in same_pic_index:  # 遍历所有相同图像的索引
    text = "相同的照片:"
    for same in same_list:
        text += str(pic_file[same]) + ", "  # 拼接文件名
    print(text)

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
2月前
|
人工智能 数据安全/隐私保护 异构计算
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
377 8
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
|
5月前
|
机器学习/深度学习 监控 算法
基于mediapipe深度学习的手势数字识别系统python源码
本内容涵盖手势识别算法的相关资料,包括:1. 算法运行效果预览(无水印完整程序);2. 软件版本与配置环境说明,提供Python运行环境安装步骤;3. 部分核心代码,完整版含中文注释及操作视频;4. 算法理论概述,详解Mediapipe框架在手势识别中的应用。Mediapipe采用模块化设计,包含Calculator Graph、Packet和Subgraph等核心组件,支持实时处理任务,广泛应用于虚拟现实、智能监控等领域。
|
2月前
|
机器学习/深度学习 数据采集 算法
基于mediapipe深度学习的运动人体姿态提取系统python源码
本内容介绍了基于Mediapipe的人体姿态提取算法。包含算法运行效果图、软件版本说明、核心代码及详细理论解析。Mediapipe通过预训练模型检测人体关键点,并利用部分亲和场(PAFs)构建姿态骨架,具有模块化架构,支持高效灵活的数据处理流程。
|
2月前
|
小程序 PHP 图形学
热门小游戏源码(Python+PHP)下载-微信小程序游戏源码Unity发实战指南​
本文详解如何结合Python、PHP与Unity开发并部署小游戏至微信小程序。涵盖技术选型、Pygame实战、PHP后端对接、Unity转换适配及性能优化,提供从原型到发布的完整指南,助力开发者快速上手并发布游戏。
|
4月前
|
算法 数据可视化 数据挖掘
基于EM期望最大化算法的GMM参数估计与三维数据分类系统python源码
本内容展示了基于EM算法的高斯混合模型(GMM)聚类实现,包含完整Python代码、运行效果图及理论解析。程序使用三维数据进行演示,涵盖误差计算、模型参数更新、结果可视化等关键步骤,并附有详细注释与操作视频,适合学习EM算法与GMM模型的原理及应用。
|
4月前
|
API 数据安全/隐私保护 开发者
企业微信自动加好友软件,导入手机号批量添加微信好友,python版本源码分享
代码展示了企业微信官方API的合规使用方式,包括获取access_token、查询部门列表和创建用户等功能
|
3月前
|
并行计算 算法 Java
Python3解释器深度解析与实战教程:从源码到性能优化的全路径探索
Python解释器不止CPython,还包括PyPy、MicroPython、GraalVM等,各具特色,适用于不同场景。本文深入解析Python解释器的工作原理、内存管理机制、GIL限制及其优化策略,并介绍性能调优工具链及未来发展方向,助力开发者提升Python应用性能。
247 0
|
4月前
|
机器人 API 数据安全/隐私保护
QQ机器人插件源码,自动回复聊天机器人,python源码分享
消息接收处理:通过Flask搭建HTTP服务接收go-cqhttp推送的QQ消息47 智能回复逻辑
|
7月前
|
前端开发 JavaScript 关系型数据库
基于python的租房网站-房屋出租租赁系统(python+django+vue)源码+运行
该项目是基于python/django/vue开发的房屋租赁系统/租房平台,作为本学期的课程作业作品。欢迎大家提出宝贵建议。
233 6
|
7月前
|
JavaScript 前端开发 关系型数据库
基于Python+Vue开发的体育场馆预约管理系统源码+运行
本项目为大学生课程设计作业,采用Python和Vue技术构建了一个体育场馆预约管理系统(实现前后端分离)。系统的主要目标在于帮助学生理解和掌握Python编程知识,同时培养其项目规划和开发能力。参与该项目的学习过程,学生能够在实际操作中锻炼技能,为未来的职业发展奠定良好的基础。
183 3

推荐镜像

更多
下一篇
oss云网关配置