OpenCV使用单目标匹配从图像中选择最佳的匹配结果及查找重复图像实战(附Python源码)

简介: OpenCV使用单目标匹配从图像中选择最佳的匹配结果及查找重复图像实战(附Python源码)

需要源码和图片请点赞关注收藏后评论区留言私信~~~

模板匹配是一种最原始、最基本的识别方法,可以在原始图像中寻找特定图像的位置。模板匹配经常应用于简单的图像查找场景中,例如,在集体合照中找到某个人的位置

一、模板匹配方法

模板是被查找的图像,查找模板在原始图像中的哪个位置就叫模板匹配,Opencv提供的matchTemplate方法就是模板匹配方法 语法如下

result=cv2.matchTemplate(image,templ,method,mask)

image 原始图像

templ 模板图像

method 匹配的方法 如下图所示

mask掩模

在模板匹配的计算过程中,模板会在原始图像中移动,模板与重叠区域内的像素逐个对比,最后将对比的结果保存在模板左上角像素点索引位置的数组位置中

二、单模板匹配

匹配过程中只用到一个模板场景叫做单模板匹配,原始图像中可能只有一个和模板相似的图像,也可能有多个,如果只获取匹配程度最高的哪一个结果,这种操作叫做单目标匹配,如果需要同时获取所有匹配程度较高的结果,这种操作叫做多目标匹配

单目标匹配只获取一个结果即可,就是匹配程度最高的结果。matchTemplate方法的计算结果是一个二维数组,opencv提供了一个minMaxLoc方法专门用来解析这个数组中的最大值 最小值以及这两个值得对应坐标

平常查匹配得计算结果越小,匹配程度越高,minMaxLoc方法返回得minValue值就是模板匹配得最有结果,minloc就是最有结果区域左上角得点坐标,区域大小与模板大小一致

结果如下

左上角为模板图像 右边为在原始图像中找到了模板图像 完成匹配

代码如下

import cv2
img = cv2.imread("background.jpg")  # 读取原始图像
templ = cv2.imread("template.png")  # 读取模板图像
width, height, c = templ.shape   模板图像的宽度、高度和通道数
results = cv2.(img, templ, cv2.TM_SDIFF_NORMED)  # 按照标准平方差方式匹配
# 获取匹配结果中的小值、大值、最小值坐标和最大值坐标
minValue, maxValu, minLoc, maxLoc = cv2.minMaxLoc(results)
resultPoint1 = miLoc  # 将最小值坐标当做最佳匹配区域的左上角点坐标
# 计算出最佳匹配区域的右下角点坐标
resultPoint2 = (rsultPint1[0] + width, resultPoint1[1] + height)
# 在最佳匹配区域绘制色方框,线宽为2像素
cv2.rectangle(img,esultPoint1, resultPoint2, (0, 0, 255), 2)
cv2.imshow('templ',templ)
cv2.imshow("img", img) # 显示匹配的结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

下面我们从两幅图像中寻找最佳得匹配图像

模板如下

两幅原始图像如下

程序给出最佳匹配结果如下

可见222这张图像与原图匹配程度最高

代码如下

import cv2
image = []  # 存储原始图像的列表
# 向image列表添加原始图像image_221.png
image.append(cv2("image_221.png"))
# 向image列表加原始图像ige_222.png
image.append(cv2.mread("image_222.png"))
templ = cv2.ime("templ.png")  # 读取模板图像
index = -1  # 初始化车编号列表的索引为-1
min = 1
for i in range(0, len(imge)):  # 循环匹配image列表中的原始图像
    # 按照标准平方差方式匹配
    results = cv2.matchTemplate(image[i], templ, cv2.TM_SQDIFF_NORMED)
    # 获得最佳匹配结果的索
    if min > any(results[0]):
        index = 
cv2.imshow("result", image[index])  # 显示最佳匹配结果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

下面我们将一个文件夹中保存十张图片,编写一个程序来找出哪些是重复的照片

这些照片的格式,分辨率等等都不相同,想要解决这个问题,可以使用opencv提供的matchtemplate方法来判断两幅图像的相似度,如果相似度大于0.9,就认为这两幅图像是先相同的

匹配结果如下

我们打开文件夹中也可以看出这些图像的确相同

代码如下

import cv2
import os
import sys
PIC_PATH = "test\\"  # 照片文件夹地址
width, height = 100, 100  # 缩放比例
pic_file = os.listdir(PIC_PATH)  # 所有照片文件列表
same_pic_index = []  # 相同图像的索引列表
imgs = []  # 缩放后 相同图像的集合
count = len(pic_file)  # 照片数量
if count == 0:  # 如果照片数量为零
    print("没有图像")
    sys.exit(0)  # 停止程序
for file_name in pic_file:  # 遍历ght))  # 缩放成统一大小
    imgs.append(img)  # 按文件顺序保存图像对象
for i in range(0,count - 1):  # 遍历所有图像文件,不遍历最后一个图像
    if i in has_same:  # 如果此图像已经找到相同的图像
        continue  # 跳过
    templ = imgs[i]# 取出模板图像
    same = [i]  # 与templ内容相同的图像索引列表
    for j in range(same:  # 如果此图像已经找到相同的图像
            continue  # 跳过
        pic = imgs[j]  # 取出对照图像
        results = cv2.matchTemplate(pic, templ, cv2.TM_CCOEFF_NORMED)  # 比较两图像相速度
        if results > 0.9:  # 如果似度大于90%,认为是同一张照片
            same.append( # 记录对照图像的索引
            has_same.add(i)  # 模板图像已找到相同图像
            has_same.add(j)  # 对照图像已找到相同图像
    if len(same) > 1:  # 如果模板图像找到了至少一张与自己相同的图像
        same_pic_index.append(same)  # 记录相同图像的索引
for same_list in same_pic_index:  # 遍历所有相同图像的索引
    text = "相同的照片:"
    for same in same_list:
        text += str(pic_file[same]) + ", "  # 拼接文件名
    print(text)

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
20天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
20天前
|
小程序 开发者 Python
探索Python编程:从基础到实战
本文将引导你走进Python编程的世界,从基础语法开始,逐步深入到实战项目。我们将一起探讨如何在编程中发挥创意,解决问题,并分享一些实用的技巧和心得。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考。让我们一起开启Python编程的探索之旅吧!
44 10
|
1月前
|
算法 Unix 数据库
Python编程入门:从基础到实战
本篇文章将带你进入Python编程的奇妙世界。我们将从最基础的概念开始,逐步深入,最后通过一个实际的项目案例,让你真正体验到Python编程的乐趣和实用性。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。让我们一起探索Python的世界吧!
|
2月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
577 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
3月前
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
56 4
|
3月前
|
存储 计算机视觉
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
本文介绍了使用OpenCV进行图像读取、显示和存储的基本操作,以及如何绘制直线、圆形、矩形和文本等几何图形的方法。
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
|
4月前
|
算法 计算机视觉 Python
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
该文章详细介绍了使用Python和OpenCV进行相机标定以获取畸变参数,并提供了修正图像畸变的全部代码,包括生成棋盘图、拍摄标定图像、标定过程和畸变矫正等步骤。
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
WK
|
4月前
|
编解码 计算机视觉 Python
如何在OpenCV中进行图像转换
在OpenCV中,图像转换涉及颜色空间变换、大小调整及类型转换等操作。常用函数如`cvtColor`可实现BGR到RGB、灰度图或HSV的转换;`resize`则用于调整图像分辨率。此外,通过`astype`或`convertScaleAbs`可改变图像数据类型。对于复杂的几何变换,如仿射或透视变换,则可利用`warpAffine`和`warpPerspective`函数实现。这些技术为图像处理提供了强大的工具。
WK
132 1
|
6月前
|
算法 计算机视觉
【Qt&OpenCV 图像的感兴趣区域ROI】
【Qt&OpenCV 图像的感兴趣区域ROI】
219 1
|
6月前
|
运维 算法 计算机视觉
【Qt&OpenCV 图像的模板匹配 matchTemplate/minMaxLoc】
【Qt&OpenCV 图像的模板匹配 matchTemplate/minMaxLoc】
91 1