OpenCV中图像的平移、旋转、倾斜、透视的讲解与实战(附Python源码)

简介: OpenCV中图像的平移、旋转、倾斜、透视的讲解与实战(附Python源码)

需要源码请点赞关注收藏后评论区留言私信~~~

一、仿射变换

仿射变换是一种仅在二维平面中发生的几何变形,变换之后的图形仍然可以保持直线的平直性和平行性,也就是说原来的直线变换之后还是直线,平行线变换之后还是平行线,常见的仿射变换包括平移 旋转和倾斜

OpenCV通过cv2.warpAffine()方法实现仿射变换效果 语法如下

dst=cv2.warpAffine(src,M,dsize,flags,borderMode,borderValue)

M 一个二行三列的矩阵 根据此矩阵的值变换原图中的像素位置

dsize 输出图像的尺寸大小

flags 插值方式 建议使用默认方式

borderMode 边界类型

borderValue 边界值

M也被叫做仿射矩阵 实际上是一个2*3的列表

M=[[a,b,c],[d,e,f]] 仿射变换输出的图像按照以下公式计算

新x=原x*a+原y*b+c

新y=原x*d+原y*e+f

平移

平移就是让图像中的所有像素同时沿着水平或者垂直方向移动,实现这种效果只需要将M设置为以下即可

M=[[1,0,水平移动距离],[0,1,垂直移动的距离]]

让图像向右下方平移效果如下

import cv2
import numpy as np
img = cv2.imread("demo.png")  # 读取图像
rows = len(img)  # 图像像素行数
cols = len(img[0])  # 图像像素列数
M = np.float32([[1, 0, 50],  # 横坐标向右移动50像素
                [0, 1, 100]])  # 纵坐标向下移动100像素
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow("img", img)  # 显示原图
cv2.imshow("dst", dst)  # 显示仿射变换效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

旋转

OpenCV提供了getRotationMatrix2D方法自动计算旋转图像的M矩阵 语法如下

M=cv2.getRotationMartix2D(center,angle,scale)

center 旋转点的中心坐标

angle 旋转的角度 正数逆时针 负数顺时针

scale 缩放比例

下面让图像逆时针旋转30度的同时缩小到原来的百分之八十

import cv2
img = cv2.imread("demo.png")  # 读取图像
rows = len(img)  # 图像像素行数
cols = len(img[0])  # 图像像素列数
center = (rows / 2, cols / 2)  # 图像的中心点
M = cv2.getRotationMatrix2D(center, 30, 0.8)  # 以图像为中心,逆时针旋转30度,缩放0.8倍
dst = cv2.warpAffine(img, M, (cols, rows))  # 按照M进行仿射
cv2.imshow("img", img)  # 显示原图
cv2.imshow("dst", dst)  # 显示仿射变换效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

倾斜

OpenCV需要定位图像的三个点来计算倾斜效果,这三个点分别是左上角 右上角和左下角,这样可以保证图像的平直性和平行性

同样有getAffineTransform方法来自动计算倾斜图像的M矩阵 语法如下

M=cv2.getAffineTransform(src,dst)

src 原图三个点的坐标 格式为三行两列的浮点数列表

dst 倾斜图像的三个点坐标 格式与src一样

下面让图像向右倾斜

import cv2
import numpy as np
img = cv2.imread("demo.png")  # 读取图像
rows = len(img)  # 图像像素行数
cols = len(img[0])  # 图像像素列数
p1 = np.zeros((3, 2), np.float32)  # 32位浮点型空列表,原图三个点
p1[0] = [0, 0]  # 左上角点坐标
p1[1] = [cols - 1, 0]  # 右上角点坐标
p1[2] = [0, rows - 1]  # 左下角点坐标
p2 = np.zeros((3, 2), np.float32)  # 32位浮点型空列表,倾斜图三个点
p2[0] = [50, 0]  # 左上角点坐标,向右挪50像素
p2[1] = [cols - 1, 0]  # 右上角点坐标,位置不变
p2[2] = [0, rows - 1]  # 左下角点坐标,位置不变
M = cv2.getAffineTransform(p1, p2)  # 根据三个点的变化轨迹计算出M矩阵
dst = cv2.warpAffine(img, M, (cols, rows))  # 按照M进行仿射
cv2.imshow('img', img)  # 显示原图
cv2.imshow('dst', dst)  # 显示仿射变换效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

二、透视

透视就是让图像在三维空间中变形,从不同的角度观察物体,会看到不同的变形画面

OpenCV中需要通过定位图像的四个点计算透视效果,透视效果不能保证图像的平直性和平行性

OpenCV通过warpPerspective方法来实现透视效果

M=cv2.warpPerspective(src,M,dsize,flags,borderMode,borderValue)

M是一个三行三列的矩阵 根据此矩阵的值变换原图中的像素位置

通过getPerspectiveTransform方法来计算M矩阵

下面模拟从底部观察图像得到的透视效果

import cv2
import numpy as np
img = cv2.imread("demo.png")  # 读取图像
rows = len(img)  # 图像像素行数
cols = len(img[0])  # 图像像素列数
p1 = np.zeros((4, 2), np.float32)  # 32位浮点型空列表,保存原图四个点
p1[0] = [0, 0]  # 左上角点坐标
p1[1] = [cols - 1, 0]  # 右上角点坐标
p1[2] = [0, rows - 1]  # 左下角点坐标
p1[3] = [cols - 1, rows - 1]  # 右下角点坐标
p2 = np.zeros((4, 2), np.float32)  # 32位浮点型空列表,保存透视图四个点
p2[0] = [90, 0]  # 左上角点坐标,向右移动90像素
p2[1] = [cols - 90, 0]  # 右上角点坐标,向左移动90像素
p2[2] = [0, rows - 1]  # 左下角点坐标,位置不变
p2[3] = [cols - 1, rows - 1]  # 右下角点坐标,位置不变
M = cv2.getPerspectiveTransform(p1, p2)  # 根据四个点的变化轨迹计算出M矩阵
dst = cv2.warpPerspective(img, M, (cols, rows))  # 按照M进行仿射
cv2.imshow('img', img)  # 显示原图
cv2.imshow('dst', dst)  # 显示仿射变换效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
3465 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
214 4
|
12月前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
302 63
|
10月前
|
XML 机器学习/深度学习 人工智能
使用 OpenCV 和 Python 轻松实现人脸检测
本文介绍如何使用OpenCV和Python实现人脸检测。首先,确保安装了OpenCV库并加载预训练的Haar特征模型。接着,通过读取图像或视频帧,将其转换为灰度图并使用`detectMultiScale`方法进行人脸检测。检测到的人脸用矩形框标出并显示。优化方法包括调整参数、多尺度检测及使用更先进模型。人脸检测是计算机视觉的基础技术,具有广泛应用前景。
439 10
|
存储 计算机视觉
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
本文介绍了使用OpenCV进行图像读取、显示和存储的基本操作,以及如何绘制直线、圆形、矩形和文本等几何图形的方法。
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
|
Python
Python对PDF文件页面的旋转和切割
Python对PDF文件页面的旋转和切割
260 3
|
机器学习/深度学习 计算机视觉 Python
opencv环境搭建-python
本文介绍了如何在Python环境中安装OpenCV库及其相关扩展库,包括numpy和matplotlib,并提供了基础的图像读取和显示代码示例,同时强调了使用Python虚拟环境的重要性和基本操作。
|
存储 安全 算法
显微镜下的安全战!Python加密解密技术,透视数字世界的每一个安全细节
【9月更文挑战第7天】在数字世界中,数据安全至关重要。Python加密解密技术如同显微镜下的精密工具,确保信息的私密性和完整性。以大型医疗机构为例,通过AES和RSA算法的结合,既能高效加密大量医疗数据,又能安全传输密钥,防止数据泄露。以下是使用Python的`pycryptodome`库实现AES加密和RSA密钥交换的简化示例。此方案不仅提高了数据安全性,还为数字世界的每个细节提供了坚实保障,引领我们迈向更安全的未来。
159 2
|
机器学习/深度学习 人工智能 算法
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
海洋生物识别系统。以Python作为主要编程语言,通过TensorFlow搭建ResNet50卷积神经网络算法,通过对22种常见的海洋生物('蛤蜊', '珊瑚', '螃蟹', '海豚', '鳗鱼', '水母', '龙虾', '海蛞蝓', '章鱼', '水獭', '企鹅', '河豚', '魔鬼鱼', '海胆', '海马', '海豹', '鲨鱼', '虾', '鱿鱼', '海星', '海龟', '鲸鱼')数据集进行训练,得到一个识别精度较高的模型文件,然后使用Django开发一个Web网页平台操作界面,实现用户上传一张海洋生物图片识别其名称。
585 7
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
|
机器学习/深度学习 人工智能 算法
【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练
乐器识别系统。使用Python为主要编程语言,基于人工智能框架库TensorFlow搭建ResNet50卷积神经网络算法,通过对30种乐器('迪吉里杜管', '铃鼓', '木琴', '手风琴', '阿尔卑斯号角', '风笛', '班卓琴', '邦戈鼓', '卡萨巴', '响板', '单簧管', '古钢琴', '手风琴(六角形)', '鼓', '扬琴', '长笛', '刮瓜', '吉他', '口琴', '竖琴', '沙槌', '陶笛', '钢琴', '萨克斯管', '锡塔尔琴', '钢鼓', '长号', '小号', '大号', '小提琴')的图像数据集进行训练,得到一个训练精度较高的模型,并将其
402 0
【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练

推荐镜像

更多