【数据分析与可视化】Pandas可视化与数据透视表的讲解及实战(超详细 附源码)

简介: 【数据分析与可视化】Pandas可视化与数据透视表的讲解及实战(超详细 附源码)

需要源码请点赞关注收藏后评论区留言私信~~~

一、数据透视表

数据透视表(Pivot Table)是数据分析中常见的工具之一,根据一个或多个键值对数据进行聚合,根据列或行的分组键将数据划分到各个区域

在Pandas中,除了使用groupby对数据分组聚合实现透视功能外,还可以使用pivot_table函数实现

pivot_table函数格式:     pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')

表4-5. pivot_table函数主要参数及其说明

pivot_table默认计算均值

import pandas as pd
import numpy as np
data = pd.DataFrame({'k1':['a','b','a','a','c','c','b','a','c','a','b','c'],'k2':['one',
'two','three','two','one','one','three','one','two','three','one','two'],
'w':np.random.rand(12),'y':np.random.randn(12)})
print(data)
print("------------------------------------------------")
print(data.pivot_table(index = 'k1',columns = 'k2'))

分类汇总并求和

data.pivot_table(index = 'k1',columns = 'k2',aggfunc = 'sum')

交叉表是一种特殊的透视表,主要用于计算分组频率

crosstab的格式

crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, dropna=True, normalize=False)

crosstab主要参数及其说明

交叉表示例

pd.crosstab(data.k1,data.k2)

带参数margin

pd.crosstab(data.k1,data.k2,margins = True)

二、Pandas可视化

Pandas中集成了Matplotlib中的基础组件,让绘图更加便捷

DataFrame.plot除了Series中的参数外,还有一些独特选项 如下表所示

1 线形图

Pandas库中的Series和DataFrame中都有绘制各类图表的plot方法,默认绘制的都是线形图

通过DataFrame对象的plot方法可以为各列绘制一条线,并创建图例

线形图一般用于描述两组数据之间的趋势

import matplotlib.pyplot as plt
%matplotlib inline
s = pd.Series(np.random.normal(size = 10))
s.plot()

通过DataFrame对象的plot方法可以为各列绘制一条曲线 并创建好图例

df = pd.DataFrame({'normal':np.random.normal(size = 50),'gamma':np.
random.gamma(1,size = 50)})
df.plot()

2 柱状图

柱状图一般描述各类别之间的关系,在Pandas中绘制柱状图只需在plot函数中加参数kind = ‘bar’,如果类别较多,可以绘制水平柱状图(kind = ‘barh’)

stu = {'name':['小明','王芳','赵平','李红','李涵'],
      'sex':['male','female','female','female','male'],
      'year':[1996,1997,1994,1999,1996]}
data = pd.DataFrame(stu)
print(data['sex'].value_counts())
print(data['sex'].value_counts().plot(kind = 'bar',rot = 30))

对DataFrame数据而言,每一行的值会成为一组

df = pd.DataFrame(np.random.randint(1,100,size = (3,3)),index = 
{'one','two','three'},columns = ['I1','I2','I3'])
df.plot(kind = 'barh')

3 直方图和密度图

直方图用于频率分布,y轴为数值或比率。绘制直方图,可以观察数据值的大致分布规律。pandas中的直方图可以通过hist方法绘制

核密度估计是对真实密度的估计,其过程是将数据的分布近似为一组核(如正态分布)。通过plot函数的kind = ‘kde’可以进行绘制

 

wy = pd.Series(np.random.normal(size = 80))
s.hist(bins = 15,grid = False)
wy = pd.Series(np.random.normal(size = 80))
s.plot(kind = 'kde')

4 散点图

散点图主要用来表现数据之间的规律

通过plot函数的kind = 'scatter'可以进行绘制

wd = pd.DataFrame(np.arange(10),columns = ['A'])
wd['B'] = 2*wd['A']+4
wd.plot(kind = 'scatter',x = 'A',y = 'B')

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
1月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
2月前
|
数据可视化 数据挖掘 Python
Pandas数据探索性可视化的最佳实践
【10月更文挑战第13天】数据可视化是数据分析中不可或缺的一环,它帮助我们更好地理解数据、发现趋势和模式,并有效地传达我们的发现。在Python领域,Pandas和Matplotlib是两个非常强大的库,它们提供了丰富的功能来进行数据分析和可视化。本文将介绍如何结合使用Pandas和Matplotlib进行数据探索性可视化的最佳实践。
|
1月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
1月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
2月前
|
机器学习/深度学习 数据采集 算法
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
【10月更文挑战第5天】随着数据科学和机器学习领域的快速发展,处理大规模数据集的能力变得至关重要。Python凭借其强大的生态系统,尤其是NumPy、Pandas和SciPy等库的支持,在这个领域占据了重要地位。本文将深入探讨这些库如何帮助科学家和工程师高效地进行数据分析,并通过实际案例来展示它们的一些高级应用。
67 0
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
|
2月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据处理与可视化——以气温数据分析为例
【10月更文挑战第12天】使用Python进行数据处理与可视化——以气温数据分析为例
356 0
|
2月前
|
数据采集 数据可视化 数据挖掘
Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
【10月更文挑战第3天】Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
157 0
|
1月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
75 0