【Python机器学习】数据可视化讲解及性别、周末与购物间可视化实战(超详细 附源码)

简介: 【Python机器学习】数据可视化讲解及性别、周末与购物间可视化实战(超详细 附源码)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

数据可视化

数据可视化通过直观的方式增加对数据的理解,帮助提取有用特征。

1.特征取值分布

特征的取值分布情况可以为分析特征提供重要信息。一般采用直方图和饼图来可视化取值分布。Python扩展库Matplotlib提供了多种画图方法。

2.离散型特征与离散型标签的关系

样本特征的值与该样本的标签的关系,是机器学习最为关心的事情。通过可视化,可以直观地展现标签值随某特征取值的变化而变化的情况。

3.连续型特征与离散型标签的关系

观察连续型特征与离散型标签的关系,常用盒图(Box plots)。

对于单个变量,盒图描述的是其分布的四分位图:上边缘 上四分位数 中位数 下四分位数和下边缘,上边缘是最大数,上四分位数是由大到小排在四分之一的那个值,中位数是排在中间的那个数,下四分位数是排在四分之三的那个数,下边缘是最小数,单个变量的盒图便于观察变量值的分布中心 扩展和偏移,另外还可以发现离群的异常值的存在

4.离散型特征与连续型标签的关系

密度图(Density plots)也可用来可视化类似关系。 在密度图中,将每个离散的特征值画一条曲线,多条曲线放在一起进行比较,每个离散特征值的曲线的横坐标设为连续的标签值,纵坐标设为对应标签纸的密度

5.连续型特征与连续型标签的关系

连续型特征与连续型标签的关系是常用的画图方式,即将输入、输出值对应在平面上作点,可采用matplotlib和pandas中的scatter()函数。

下面是部分绘图函数与其对应函数方法

可视化性别、周末与购物之间关系

可以采用马赛克图来可视化离散型特征值与离散型标签的关系

下面给出一个简单示例,其中可视化了性别与购物之间关系的可视化,以及周末与购物之间关系的可视化

部分数据如下 性别1男 0女 是否购物 1购物 0不购物

[2020, 11, 1, 1, 1],
               [2020, 11, 1, 0, 1],
               [2020, 11, 1, 0, 1],
               [2020, 11, 1, -1, 1],
               [2020, 11, 1, 1, 1],
               [2020, 11, 1, 0, 1],
               [2020, 11, 1, 0, 0],
               [2020, 11, 1, 0, 1],
               [2020, 11, 2, 1, 0],
               [2020, 11, 2, 1, 1],
              ],
               [2020, 11, 7, 0, 1],
               [2020, 11, 8, 1, 1],
               [2020, 11, 8, 0, 1],
               [2020, 11, 9, 0, 0],
               [2020, , 11, 1, -1],
               [2020, 11, 12, 0, 0]]

性别与购物关系的马赛克图如下

周末与购物之间关系如下

部分代码如下

import datetime # 导入datetime模块,该模块用来处理与日期和时间有关的计算
# 定义一个判断是否为周末的函数
def isweekend( date ): 
    theday = datetime.date( date[0], date[1], date[2] ) # 创建一个date对象
    if theday.isoweekday() in { 6, 7 }: # 如果date是周末则返回1,否则返回0
        return 1
    else:
        return 0
# 是否周末的特征,性别,是否购物三项数据
train_set1 = []
for i in range(len(train_data)):
        weekend = isweekend(train_data[i][:3])
        train_set1.append( [weekend, train_data[i][3], train_data[i][4]] )
wk = df[0].astype('str').apply(lambda x: '周末' if x=='1' else '非周末')
man = df[1].astype('str').apply(lambda x: '男' if x=='1' else '女')
label = df[2].astype('str').apply(lambda x: '购物' if x=='1' else '不购物')
#print(label)
mosaic_data1 = pd.concat([man, label], axis=1)
#print(mosaic_data)
mosaic(data=mosaic_data1, index=[1, 2], gap=0.01, title=u'性别与购物的关系')

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
2月前
|
人工智能 数据安全/隐私保护 异构计算
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
377 8
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
|
2月前
|
机器学习/深度学习 数据采集 算法
基于mediapipe深度学习的运动人体姿态提取系统python源码
本内容介绍了基于Mediapipe的人体姿态提取算法。包含算法运行效果图、软件版本说明、核心代码及详细理论解析。Mediapipe通过预训练模型检测人体关键点,并利用部分亲和场(PAFs)构建姿态骨架,具有模块化架构,支持高效灵活的数据处理流程。
|
2月前
|
小程序 PHP 图形学
热门小游戏源码(Python+PHP)下载-微信小程序游戏源码Unity发实战指南​
本文详解如何结合Python、PHP与Unity开发并部署小游戏至微信小程序。涵盖技术选型、Pygame实战、PHP后端对接、Unity转换适配及性能优化,提供从原型到发布的完整指南,助力开发者快速上手并发布游戏。
|
4月前
|
算法 数据可视化 数据挖掘
基于EM期望最大化算法的GMM参数估计与三维数据分类系统python源码
本内容展示了基于EM算法的高斯混合模型(GMM)聚类实现,包含完整Python代码、运行效果图及理论解析。程序使用三维数据进行演示,涵盖误差计算、模型参数更新、结果可视化等关键步骤,并附有详细注释与操作视频,适合学习EM算法与GMM模型的原理及应用。
|
4月前
|
API 数据安全/隐私保护 开发者
企业微信自动加好友软件,导入手机号批量添加微信好友,python版本源码分享
代码展示了企业微信官方API的合规使用方式,包括获取access_token、查询部门列表和创建用户等功能
|
3月前
|
并行计算 算法 Java
Python3解释器深度解析与实战教程:从源码到性能优化的全路径探索
Python解释器不止CPython,还包括PyPy、MicroPython、GraalVM等,各具特色,适用于不同场景。本文深入解析Python解释器的工作原理、内存管理机制、GIL限制及其优化策略,并介绍性能调优工具链及未来发展方向,助力开发者提升Python应用性能。
247 0
|
4月前
|
机器人 API 数据安全/隐私保护
QQ机器人插件源码,自动回复聊天机器人,python源码分享
消息接收处理:通过Flask搭建HTTP服务接收go-cqhttp推送的QQ消息47 智能回复逻辑
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
523 14
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
497 1
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)

热门文章

最新文章

推荐镜像

更多
下一篇
oss云网关配置