【Python机器学习】标注任务与序列问题讲解(图文解释)

简介: 【Python机器学习】标注任务与序列问题讲解(图文解释)

标注模型用于处理有前后关联关系的序列问题。在预测时,它的输入是一个观测序列,该观测序列的元素一般具有前后的关联关系。它的输出是一个标签序列,也就是说,标注模型的输出是一个向量,该向量的每个元素是一个标签,它们与输入序列的元素一一对应。标签的值是有限的离散值。

标注任务

记输入的序列为x=(x^(1),x^(2),…,x^(n)),输出的标签序列为y=(y^(1),y^(2),…,y^(n))。

标注任务分为学习过程和标注过程。

可完成标注任务的模型有概率模型和神经网络模型两类。

概率模型在学习过程学习到从序列x到序列y的条件概率:

概率模型在标注过程按照学习得到的条件概率分布模型,以概率值最大的方式对新的输入序列找到相应的输出标签序列。

具体来讲,就是对一个输入的测试序列x=(x^(1),x^(2),…,x^(n))找到使条件概率P ̂(y^(1),y^(2),…,y^(n)|x^(1),x^(2),…,x^(n))最大的标记序列y ̂=(y ̂^(1),y ̂^(2),…,y ̂^(n))。

神经网络模型在学习过程建立起能正确反映从序列x到序列y的映射关系的神经网络N(S,W),并在标注过程将测试序列x=(x^(1),x^(2),…,x^(n))馈入神经网络,得到输出序列y ̂=(y ̂^(1),y ̂^(2),…,y ̂^(n))。

目前,用来完成标注任务的神经网络主要是所谓的循环神经网络RNN。

序列问题

实际上,标注只是序列问题中的一种。与序列有关的任务还有序列聚类、序列回归和序列分类等任务,它们也都可以看作机器学习的聚类、回归和分类等任务中的一种。

完成序列任务的神经网络一般是多层的,即深度神经网络。比如,用循环神经网络来完成序列回归任务,像预测气温变化;用卷积神经网络或循环神经网络来完成序列分类任务,像电影评论的自动分类等等。

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
15天前
|
数据采集 存储 监控
21个Python脚本自动执行日常任务(2)
21个Python脚本自动执行日常任务(2)
58 7
21个Python脚本自动执行日常任务(2)
|
19天前
|
Python
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
43 18
|
20天前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
1月前
|
运维 监控 网络安全
自动化运维的崛起:如何利用Python脚本简化日常任务
【10月更文挑战第43天】在数字化时代的浪潮中,运维工作已从繁琐的手工操作转变为高效的自动化流程。本文将引导您了解如何运用Python编写脚本,以实现日常运维任务的自动化,从而提升工作效率和准确性。我们将通过一个实际案例,展示如何使用Python来自动部署应用、监控服务器状态并生成报告。文章不仅适合运维新手入门,也能为有经验的运维工程师提供新的视角和灵感。
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
1月前
|
运维 监控 Python
自动化运维:使用Python脚本简化日常任务
【10月更文挑战第36天】在数字化时代,运维工作的效率和准确性成为企业竞争力的关键。本文将介绍如何通过编写Python脚本来自动化日常的运维任务,不仅提高工作效率,还能降低人为错误的风险。从基础的文件操作到进阶的网络管理,我们将一步步展示Python在自动化运维中的应用,并分享实用的代码示例,帮助读者快速掌握自动化运维的核心技能。
88 3
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
89 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
47 2
|
1月前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
84 1
|
1月前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
126 1