【Python机器学习】密度聚类DBSCAN、OPTICS的讲解及实战演示(附源码 超详细)

简介: 【Python机器学习】密度聚类DBSCAN、OPTICS的讲解及实战演示(附源码 超详细)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

划分聚类、密度聚类和模型聚类是比较有代表性的三种聚类思路

1:划分聚类

划分(Partitioning)聚类是基于距离的,它的基本思想是使簇内的点距离尽量近、簇间的点距离尽量远。k-means算法就属于划分聚类。划分聚类适合凸样本点集合的分簇。

2:密度聚类

密度(Density)聚类是基于所谓的密度进行分簇

密度聚类的思想是当邻域的密度达到指定阈值时,就将邻域内的样本点合并到本簇内,如果本簇内所有样本点的邻域密度都达不到指定阈值,则本簇划分完毕,进行下一个簇的划分。

DBSCAN

DBSCAN算法将所有样本点分为核心点、边界点和噪声点,如灰色点、白色点和黑色点所示

核心点:在指定大小的邻域内有不少于指定数量的点。指定大小的邻域,一般用邻域半径eps来确定。指定数量用min_samples来表示。

边界点:处于核心点的邻域内的非核心点。

噪声点:邻域内没有核心点的点

DBSCAN算法需要预先指定eps和min_samples两个参数,即它们是超参数。

算法寻找一个簇的过程是先对样本点按顺序排查,如果能找到一个核心点,就从该核心点出发找出所有直接和间接与之相邻的核心点,以及这些核心点的所有边界点,这些核心点和边界点就形成一个簇

接着,从剩下的点中再找另一个簇,直到没有核心点为止。余下的点为噪声点。

效果展示如下 对数据集中三十个坐标应用DBSCAN算法

下面三幅图是eps和min_samples取不同值时候的分布情况

代码如下

from sklearn.cluster import DBSCAN
import numpy as np
samples = np.loadtxt("kmeansSamples.txt")
clustering = DBSCAN(eps=5, min_samples=5).fit(samples)
clustering.labels_
>>>array([ 0,  0,  0,  0, -1,  0,  0,  0,  1,  1,  1,  1,  0,  0,  0,  0, -1,        1,  1,  0,  0,  1,  0,  0,  0,  0,  0,  1, -1,  0], dtype=int64)
import matplotlib.pyplot as plt
plt.scatter(samples[:,0],samples[:,1],c=clustering.labels_+1.5,linewidths=np.power(clustering.labels_+1.5, 2))
plt.show()

DBSCAN算法善于发现任意形状的稠密分布数据集,但它的结果对邻域参数eps和min_samples敏感。不像k-means算法只需要调整一个参数,DBSCAN算法需要对两个参数进行联合调参,复杂度要高的多。

如果能确定聚类的具体评价指标,如簇数、噪声点数限制和SC、DBI、CH和ZQ等,则可以对参数eps和min_samples的合理取值依次运行DBSCAN算法,取最好的评价结果。如果数据量特别大,则可以将参数空间划分为若干网格,每个网格取一个代表值进行聚类。

OPTICS

OPTICS算法的基本思想是在DBSCAN算法的基础上,将每个点离最近的核心点密集区的可达距离都计算出来,然后根据预先指定的距离阈值把每个点分到与密集区对应的簇中,可达距离超过阈值的点是噪声点。点到核心点密集区的可达距离是它到该区内所有核心点的距离的最小值。

引入可达距离可以直观的看到样本点的聚集情况,OPTICS算法巧妙地解决了确定eps参数值的问题

输出结果如下

代码如下

from sklearn.cluster import OPTICS, cluster_optics_dbscan
import matplotlib.pyplot as plt
import numpy as np
samples = np.loadtxt("kmeansSamples.txt")
clust = OPTICS(max_eps=np.inf,min_samples=5, cluster_method='dbscan',eps=4.5)
clust.fit(samples)
clust.ordering_
reachability = clust.reachability_[clust.ordering_]
reachability
labels = clust.labels_[clust.ordering_]
labels
plt.plot(list(range(1, 31)),reachability,marker='.',markeredgewidth=3,linestyle='-')
plt.show()
plt.scatter(samples[:,0],samples[:,1],c=clust.labels_+1.5,linewidths=np.power(clust.labels_+1.5, 2))
plt.show()

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
3月前
|
JSON 开发工具 git
基于Python和pygame的植物大战僵尸游戏设计源码
本项目是基于Python和pygame开发的植物大战僵尸游戏,包含125个文件,如PNG图像、Python源码等,提供丰富的游戏开发学习素材。游戏设计源码可从提供的链接下载。关键词:Python游戏开发、pygame、植物大战僵尸、源码分享。
|
3月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
69 0
|
3月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
107 0
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
3月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
179 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
88 2
|
机器学习/深度学习 算法 搜索推荐
Python数据挖掘与机器学习,快速掌握聚类算法和关联分析
前文数据挖掘与机器学习技术入门实战与大家分享了分类算法,在本文中将为大家介绍聚类算法和关联分析问题。分类算法与聚类到底有何区别?聚类方法应在怎样的场景下使用?如何使用关联分析算法解决个性化推荐问题?本文就为大家揭晓答案。
16326 0
|
23天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
2月前
|
Python
[oeasy]python055_python编程_容易出现的问题_函数名的重新赋值_print_int
本文介绍了Python编程中容易出现的问题,特别是函数名、类名和模块名的重新赋值。通过具体示例展示了将内建函数(如`print`、`int`、`max`)或模块名(如`os`)重新赋值为其他类型后,会导致原有功能失效。例如,将`print`赋值为整数后,无法再用其输出内容;将`int`赋值为整数后,无法再进行类型转换。重新赋值后,这些名称失去了原有的功能,可能导致程序错误。总结指出,已有的函数名、类名和模块名不适合覆盖赋新值,否则会失去原有功能。如果需要使用类似的变量名,建议采用其他命名方式以避免冲突。
52 14
|
2月前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
116 2

热门文章

最新文章

推荐镜像

更多