极智AI | 谈谈几种量化策略:MinMax、KLD、ADMM、EQ

本文涉及的产品
视觉智能开放平台,视频通用资源包5000点
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 大家好,我是极智视界,本文分享了 谈谈几种量化策略:MinMax、KLD、ADMM、EQ。希望我的分享能给你的学习带来一点帮助。

本文主要聊一下深度学习模型量化相关策略。

模型小型化是算法部署的关键技术,模型小型化的过程通常用模型量化来描述。量化通常是高比特位到低比特位的映射过程,量化的对象既可以是权重数据,也可以是激活值。量化方式具有多种形态,不管是混合量化、还是全整型量化;不管是单层量化、成组量化、还是整网量化,都存在浮点数映射到整型数的过程,这个过程一定存在精度损失,而对于我们来说,要做的是把精度损失控制在可接受的范围。

量化又可以分为后量化、训练时量化又或是量化感知训练。后量化相比训练时量化,是一种更加高效和无侵入式的算法加速技术,这里主要聊一下后量化,包括一些主要的量化类型和量化策略:

  • 量化类型:非对称量化和对称量化、非线性量化和线性量化;
  • 量化策略:MinMax、KLD、ADMM、EQ;


1、量化类型

1.1 非对称量化和对称量化

非对称量化是比对称量化更加广义的概念,对称量化是非对称量化的一种特殊情况。

非对称量化也就是带有偏置的线性映射,其数学表达可以是这样:

其中 Z 不一定等于 0,代表浮点数的零点不一定对应整型的零点。E() 代表截断函数,作用是使其截断到对应整型的数值表述范围内。对于非对称量化,满足如下的约束:

上述约束中,T1 和 T2 是对于浮点数的截断范围,也就是非对称量化的阈值。通过换算可以得到阈值和线性映射参数 S 和 Z 的数学关系,在确定了阈值后,也就确定了线性映射的参数。

对称量化可以看作非对称量化当 Z = 0 时的一种特殊情况,满足 T1 = -T2,此时的阈值和线性映射参数的数学关系如下:

1.2 非线性量化和线性量化

线性量化往往又被称为均匀量化,这在目前的算法落地中是最常用的,上面提到的非对称量化和对称量化也是基于线性量化的。非线性量化实际用的比较少,以 LOG 量化为代表。

不同的量化方式对数据分布具有选择性。对于均匀量化,假设数据在整个表达空间内均匀分布,在均匀分布下线性量化是一种较好的量化方式。 LOG 量化则可以保证数值空间内相对误差的最优化,这是目前大部分非线形量化的目标,通过对数据分布的分析,可以提升高密度数据区域的表达能力。

举个例子,假设我要对一组数据 x 进行 int8 对称量化,量化范围为 (-a, a),对于线性量化,可以用以下数学式进行表达:

同样的,对于 LOG 非线性量化可以用如下式子进行表达:


2、量化策略

从上述的映射关系中,如果知道了阈值,那么其对应的线性映射参数也就知道了,整个量化过程也就明确了。那么该如何确定阈值呢?一般来说,对于权重的量化,由于权重的数据分布是静态的,一般直接找出 MIN 和 MAX 线性映射即可;而对于推理激活值来说,其数据分布是动态的,为了得到激活值的数据分布,往往需要一个所谓校准集的东西来进行抽样分布,有了抽样分布后再通过一些量化算法进行量化阈值的选取。

2.1 MinMax 量化

MinMax 是最简单的量化方法,量化示意如下:

MinMax 其实就是简单的把浮点数直接映射到 int8 的数据范围,MinMax 方法由浮点映射到定点的数学表达如下:

其中,R:真实浮点值(fp32);Q:量化后的定点值(int8,Q属于[-127, 127]);Z:表示0浮点值对应的量化定点值;S:定点量化后可表示的最小刻度。

这种量化方式,主要关注浮点范围的最大值和最小值,然后通过尺度 S 线性映射。这种量化方法往往会使精度下降较多,一般后面还会跟一个 requantize 的微调优化。实际上,把 MinMax 量化应用于网络权重这样静态分布的数据的时候,对于网络推理最后的精度损失影响不大,且量化操作开销更小,量化过程效率更高,这是 Nvidia 经过大量实验得出的结论。

2.2 KLD 量化

KLD 量化是用 KL 散度来衡量两个分布之间的相似性,是 Nvidia TensorRT 中对于激活值采用的量化方法,KLD 量化的示意如下:

  • 这种方法不是直接将 [min, max] 映射到 [-127,127],而是去寻找一个阈值|T| < max(|max|, |min|),将其 [-T, T] 映射到 [-127, 127]。认为只要阈值选取得当,就能将阈值外的值舍弃掉,也不会对精度损失造成大的影响;
  • 超出阈值 ±|T| 外的直接映射为阈值。比如上图中的三个红色点,直接映射为-127,这种映射关系为饱和的(Saturate );

KLD 量化方法试图将 fp32 数值分布和 int8 数值分布抽象成两个分布,用阈值 |T| 来更新两个数值分布,并用 KL 散度来衡量两个分布的相似性,若 KL 散度值越小,说明这两个分布越相似,也说明这个阈值 |T| 选择的最好。

下面的图是 TensorRT 中的关于 KL 散度校准的伪代码,这个图也完美诠释了 KLD 整个量化过程。

2.3 ADMM 量化

ADMM 交替方向乘子法,是优化函数的一种方式,一般用于带有约束的最优解问题。类似的,梯度下降法、牛顿下降法、拉格朗日乘子法也是类似的优化方法。

其通用优化式子如下:

在 ADMM 中,其等价的优化式,也就是拉格朗日式如下:

同拉格朗日乘子法不同的是,ADMM 采用的是类似于分布迭代的方式获得最终解。其采用如下的步骤:

下面我们将量化阈值的选取策略变换成 ADMM 算法,利用前面所说的对称量化方法,把量化当成一个编码问题,编码再加上解码,就还原出了可以跟原始数据进行对比的数据。这样的逻辑下,将优化目标设计成如下表达:

2-范式易于求导,那么上述的优化目标可以转换成如下形式:

个人认为在对于对称量化不需要使用 ADMM,因为只有一个变量,使用梯度下降法也是可以得到最终的s。

2.4 EQ 量化

EQ 量化即 EasyQuant,是格灵深瞳开源的量化算法,在文章《EasyQuant: Post-training Quantization via Scale Optimization》中进行了介绍。EQ 量化方法的主要思想是:误差累计、整网决策变成单网决策、以余弦相似度为优化目标、交替优化权重缩放系数和激活值缩放系数。

假设量化公式如下(为了方便起见,采用对称量化进行说明):

假设量化目标精度为 IntN,其中的 clip 函数表示把量化后的数值规范到整型范围,如下:

EQ 量化算法把缩放系数 S 的获得看成数学优化问题,将优化目标进行了如下表达:假设传入的校准集中样本个数为 N、被量化模型的网络层个数为 L,Qil 表示未量化推理时第 l 层网络层的第 i 个样本的输出值,Q^il 表示量化推理时第 l 层网络层的第 i 个样本的输出值,因为误差累计和问题分解的手段,使用余弦相似度作为评判标准,最终的优化目标如下所示:

其中 Qil 和 Q^il 在该层为卷积的时候为:

EQ 算法最大的亮点在于对权重的缩放系数也进行了优化,其他的量化阈值选取策略基本是不考虑对权重的缩放系数进行优化,直接使用 Min-Max 得到缩放系数。加入了权重的缩放系数的优化变量,导致了多变量优化问题。如若按照常规的方式进行多变量优化,该优化目标往往难以解析,EQ 给出的解法是使用交替优化权重激活系数和激活缩放系数。

EQ 算法流程如下:


3、量化实验

这里选取了 KLD 和 ADMM 两种量化算法进行了一些实验模拟。

使用 python numpy 创造随机数据分布,下面均是以正太分布进行试验。对同个分布分别使用 KL 和 ADMM 算法进行阈值计算。

以下是三次试验的结果:

使用 KLD 和 ADMM 算法得到的阈值如下:

实验小结:单从试验结果可知,ADMM 得到的量化阈值总是比 KLD 的量化阈值要高,基本稳定在max(|均值-3 * 标准差|,|均值+ 3 * 标准差|)。按照正太分布的定义,ADMM 的阈值会覆盖 99.99% 分布的数据,因为其优化目标难以忍受太小的阈值,那样会让阈值外的数值量化 + 反量化后误差极大。

以上聊了一下一些量化算法相关的东西,包括量化类型、量化策略以及贴了个试验分析,关于量化是一个实用且值得深挖的领域,有问题欢迎讨论,我也在学习中~


好了,收工~


logo_show.gif

相关文章
|
1月前
|
人工智能 安全 架构师
不只是聊天:从提示词工程看AI助手的优化策略
不只是聊天:从提示词工程看AI助手的优化策略
270 119
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
684 8
|
4月前
|
存储 人工智能 自然语言处理
AI代理内存消耗过大?9种优化策略对比分析
在AI代理系统中,多代理协作虽能提升整体准确性,但真正决定性能的关键因素之一是**内存管理**。随着对话深度和长度的增加,内存消耗呈指数级增长,主要源于历史上下文、工具调用记录、数据库查询结果等组件的持续积累。本文深入探讨了从基础到高级的九种内存优化技术,涵盖顺序存储、滑动窗口、摘要型内存、基于检索的系统、内存增强变换器、分层优化、图形化记忆网络、压缩整合策略以及类操作系统内存管理。通过统一框架下的代码实现与性能评估,分析了每种技术的适用场景与局限性,为构建高效、可扩展的AI代理系统提供了系统性的优化路径和技术参考。
251 4
AI代理内存消耗过大?9种优化策略对比分析
|
4月前
|
机器学习/深度学习 人工智能 自动驾驶
AI Agent多模态融合策略研究与实证应用
本文从多模态信息融合的理论基础出发,构建了一个结合图像与文本的AI Agent模型,并通过PyTorch代码实现了完整的图文问答流程。未来,多模态智能体将在医疗、自动驾驶、虚拟助手等领域展现巨大潜力。模型优化的核心是提升不同模态的协同理解与推理能力,从而打造真正“理解世界”的AI Agent。
AI Agent多模态融合策略研究与实证应用
|
3月前
|
存储 人工智能 自然语言处理
深入解析AI智能体记忆机制:八大策略与实现方案
本文系统介绍了AI智能体8种主流记忆管理策略:从基础的全量记忆、滑动窗口,到智能的相关性过滤、摘要压缩,再到高阶的向量数据库、知识图谱,以及综合的分层记忆和类OS内存管理。详解各策略原理、代码示例、优缺点及适用场景,助你根据业务需求选择最佳方案,构建高效且个性化的AI对话系统。
|
3月前
|
存储 人工智能 搜索推荐
AI智能体记忆机制深度解析:8种策略与实现思路
AI智能体的记忆能力是构建高质量对话与个性化服务的核心。本文解析8种常用记忆策略,包括全量记忆、滑动窗口、相关性过滤、摘要压缩、向量数据库、知识图谱、分层记忆及类OS内存管理,结合代码示例说明其原理与适用场景,助力开发者根据业务需求选择合适方案,实现高效、可扩展的AI系统。
|
4月前
|
人工智能 缓存 API
8大AI记忆优化策略助你突破智能体上下文限制
本文深入解析AI系统中的记忆管理策略,涵盖8种主流方案及工程实现,助你突破上下文限制,构建高效智能体。
840 0
|
4月前
|
数据采集 人工智能 调度
传统IT企业如何在AI时代中找准定位、实现转型升级?—— 解析传统IT企业的AI转型策略
本文AI专家三桥君探讨传统IT企业在AI浪潮中的转型策略,提出从工具提供商向业务成果交付者的商业模式转变。核心观点包括:构建"操作系统式AI"技术架构、发展"智能体经济"组织模式、采用SMART策略实现高效部署。三桥君强调AI转型需商业模式、组织架构与技术体系的全面革新,为传统IT企业提供系统性转型框架。
292 0
|
5月前
|
机器学习/深度学习 人工智能 运维
探讨AI数字人软件系统的开发与部署策略
随着科技发展,人工智能成为经济转型的关键驱动力,AI数字人软件系统在各行业广泛应用。本文探讨其开发与部署策略,助力企业和开发者参考。开发策略包括需求分析、技术选型、模块化设计、数据驱动及安全性保障;部署策略涵盖硬件环境、软件配置、分布式与云端部署以及运维保障,推动系统智能化与稳定性提升。
|
5月前
|
人工智能 搜索推荐 数据安全/隐私保护
AI矩阵获客系统开发部署策略
在竞争激烈的市场中,企业亟需高效获客工具。AI矩阵获客系统基于人工智能技术,通过大数据分析和智能匹配,精准定位目标客户,降低营销成本,提升转化率。其自动化营销功能可显著减轻人工负担。随着市场需求增长和技术成熟,开发该系统具备较高投资回报率。然而,企业在开发时需关注功能完善、隐私保护及法规遵循,以确保系统稳定性和竞争力。总体而言,AI矩阵获客系统值得投入资源开发,助力企业抢占市场先机。

热门文章

最新文章